
Sun-Ju Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514054/publications.pdf Version: 2024-02-01

SUN-IU KIM

#	Article	IF	CITATIONS
1	Carbon Dioxide Pretreatment and Cold Storage Synergistically Delay Tomato Ripening through Transcriptional Change in Ethylene-Related Genes and Respiration-Related Metabolism. Foods, 2021, 10, 744.	4.3	15
2	Oxygen plasma modulates glucosinolate levels without affecting lipid contents and composition in Brassica napus seeds. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2434-2441.	1.3	3
3	Sulfur Deficiency-Induced Glucosinolate Catabolism Attributed to Two β-Glucosidases, BGLU28 and BGLU30, is Required for Plant Growth Maintenance under Sulfur Deficiency. Plant and Cell Physiology, 2020, 61, 803-813.	3.1	39
4	Involvement of BGLU30 in Glucosinolate Catabolism in the ArabidopsisÂLeaf under Dark Conditions. Plant and Cell Physiology, 2020, 61, 1095-1106.	3.1	8
5	Red Chinese Cabbage Transcriptome Analysis Reveals Structural Genes and Multiple Transcription Factors Regulating Reddish Purple Color. International Journal of Molecular Sciences, 2020, 21, 2901.	4.1	21
6	Estimation of functional components of Chinese cabbage leaves grown in a plant factory using diffuse reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2019, 99, 711-718.	3.5	4
7	Glucosinolate Distribution in the Aerial Parts of sel1-10, a Disruption Mutant of the Sulfate Transporter SULTR1;2, in Mature Arabidopsis thaliana Plants. Plants, 2019, 8, 95.	3.5	14
8	Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. Journal of Infection and Public Health, 2019, 12, 777-782.	4.1	19
9	Brassinosteroids regulate glucosinolate biosynthesis in <scp><i>Arabidopsis thaliana</i></scp> . Physiologia Plantarum, 2018, 163, 450-458.	5.2	18
10	Molecular characterization of glucosinolates and carotenoid biosynthetic genes in Chinese cabbage () Tj ETQq0 0	0,rgBT /O	verlock 10 1 16
11	Effect of different proportion of sulphur treatments on the contents of glucosinolate in kale () Tj ETQq1 1 0.7843 Biological Sciences, 2018, 25, 349-353.	514 rgBT /0 3.8	Overlock 10 15
12	Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chemistry, 2018, 241, 7-13.	8.2	75
13	Purple Brassica oleracea var. capitata F. rubra is due to the loss of BoMYBL2–1 expression. BMC Plant Biology, 2018, 18, 82.	3.6	45
14	Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.). Saudi Journal of Biological Sciences, 2017, 24, 436-443.	3.8	39
15	Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi Journal of Biological Sciences, 2017, 24, 1387-1391.	3.8	80
16	Ethephon-induced phenylpropanoid accumulation and related gene expression in tartary buckwheat (<i>Fagopyrum tataricum</i> (L.) Gaertn.) hairy root. Biotechnology and Biotechnological Equipment, 2017, 31, 304-311.	1.3	12
17	Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Applied Biological Chemistry, 2017, 60, 249-257.	1.9	31

18Variation of glucosinolates on position orders of flower buds in turnip rape (Brassica rapa). Saudi3.8618Journal of Biological Sciences, 2017, 24, 1562-1566.3.86

#	Article	IF	CITATIONS
19	Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn). Frontiers in Microbiology, 2016, 7, 318.	3.5	83

20 Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus) Tj ETQq0 0 0 rgBT / Qverlock 10 Tf 50 7

21	Metabolomics of differently colored Gladiolus cultivars. Applied Biological Chemistry, 2016, 59, 597-607.	1.9	17
22	Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Plant Molecular Biology, 2016, 90, 503-516.	3.9	43
23	Chungpihongsim radish (Raphanus sativus L. cv. Chungpihongsim) ameliorates ethanol-induced gastric injury in rats. Oriental Pharmacy and Experimental Medicine, 2016, 16, 37-43.	1.2	2

24 Effect of Cold Storage on the Contents of Glucosinolates in Chinese Cabbage (<I>Brassica rapa</I> L.) Tj ETQq0 0 0 rgBT /Overlock 10 T

25	Physiological Roles of Rutin in the Buckwheat Plant. Japan Agricultural Research Quarterly, 2015, 49, 37-43.	0.4	37
26	Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts. Food Chemistry, 2015, 177, 204-213.	8.2	63
27	Determination of the sample number for optical reflectance measurement of vegetable leaf. Computers and Electronics in Agriculture, 2015, 112, 110-115.	7.7	1
28	Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochemistry, 2015, 50, 456-462.	3.7	31
29	Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. Journal of Functional Foods, 2015, 14, 692-701.	3.4	57
30	Influence of Auxins and Wounding on Glucosinolate Biosynthesis in Hairy Root Cultures of Chinese Cabbage (Brassica rapa ssp. pekinensis). Biosciences, Biotechnology Research Asia, 2015, 12, 1041-1046.	0.5	1
31	Location of Sampling Points in Optical Reflectance Measurements of Chinese Cabbage and Kale Leaves. Journal of Biosystems Engineering, 2015, 40, 115-123.	2.5	3
32	Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala). Horticultural Science and Technology, 2015, 33, 177-185.	0.6	8
33	Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	6
34	Comparison of Flavonoid Contents between Common and Tartary Buckwheat (Fagopyrum) Sprouts Cultured with/without Soil. Asian Journal of Chemistry, 2014, 26, 5985-5990.	0.3	4
35	Identification and Quantification of Volatile and Phenolic Compounds Composition in Buckwheat Sprouts by GC/MS and HPLC. Asian Journal of Chemistry, 2014, 26, 777-782.	0.3	7
36	Riboflavin Accumulation and Molecular Characterization of cDNAs Encoding Bifunctional GTP Cyclohydrolase II/3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase, Lumazine Synthase, and Riboflavin Synthase in Different Organs of Lycium chinense Plant. Molecules, 2014, 19, 17141-17153.	3.8	17

Sun-Ju Кім

#	Article	IF	CITATIONS
37	Free Amino Acids in Different Organs of Scutellaria baicalensis. Asian Journal of Chemistry, 2014, 26, 1910-1912.	0.3	1
38	Variation of Glucosinolate Accumulation and Gene Expression of Transcription Factors at Different Stages of Chinese Cabbage Seedlings under Light and Dark Conditions. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	11
39	Accumulation of Free Amino Acids in Different Organs of Green and Red Mustard Cultivars. Asian Journal of Chemistry, 2014, 26, 396-398.	0.3	3
40	Accumulation of Phenylpropanoids and Correlated Gene Expression in Hairy Roots of Tartary Buckwheat under Light and Dark Conditions. Applied Biochemistry and Biotechnology, 2014, 174, 2537-2547.	2.9	18
41	Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT - Food Science and Technology, 2014, 58, 93-101.	5.2	66
42	Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chemistry, 2014, 145, 77-85.	8.2	62
43	Analysis and metabolite profiling of glucosinolates, anthocyanins and free amino acids in inbred lines of green and red cabbage (Brassica oleracea L.). LWT - Food Science and Technology, 2014, 58, 203-213.	5.2	35
44	Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Horticulture Environment and Biotechnology, 2014, 55, 237-247.	2.1	33
45	Effects of Light-Emitting Diodes on Expression of Phenylpropanoid Biosynthetic Genes and Accumulation of Phenylpropanoids in <i>Fagopyrum tataricum</i> Sprouts. Journal of Agricultural and Food Chemistry, 2014, 62, 4839-4845.	5.2	79
46	Metabolite profiling of phenolics, anthocyanins and flavonols in cabbage (Brassica oleracea var.) Tj ETQq0 0 0 r	gBT /Qverlo 5.2	ock 10 Tf 50 3 40
47	Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Industrial Crops and Products, 2014, 54, 320-326.	5.2	104
48	Accumulation of anthocyanin and related genes expression during the development of cabbage seedlings. Process Biochemistry, 2014, 49, 1084-1091.	3.7	17
49	Inhibitory effects of mulberry fruit extract in combination with naringinase on the allergic response in IgE-activated RBL-2H3 cells. International Journal of Molecular Medicine, 2014, 33, 469-477.	4.0	12
50	Variation of Functional Compounds in Leafy Chinese Cabbage Grown Under Different Light Conditions in a Plant Factory. Korean Journal of Food Science and Technology, 2014, 46, 526-529.	0.3	6
51	Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Natural Product Communications, 2014, 9, 533-7.	0.5	15
52	Variation of major glucosinolates in different varieties and lines of rocket salad. Horticulture Environment and Biotechnology, 2013, 54, 206-213.	2.1	18
53	Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiology, 2013, 13, 105.	3.3	62
			-

⁵⁴Purple potato flake reduces serum lipid profile in rats fed a cholesterol-rich diet. Journal of
Functional Foods, 2013, 5, 974-980.3.414

Ѕим-Ји Кім

#	Article	IF	CITATIONS
55	Antioxidative Activities of <i>Ginkgo biloba</i> Extract on Oil/Water Emulsion System Prepared from an Enzymatically Modified Lipid Containing Alphaâ€Linolenic Acid. Journal of Food Science, 2013, 78, C43-9.	3.1	12
56	Accumulation of Anthocyanin and Associated Gene Expression in Radish Sprouts Exposed to Light and Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2013, 61, 4127-4132.	5.2	50
57	Metabolomic Analysis and Differential Expression of Anthocyanin Biosynthetic Genes in White- and Red-Flowered Buckwheat Cultivars (Fagopyrum esculentum). Journal of Agricultural and Food Chemistry, 2013, 61, 10525-10533.	5.2	27
58	Influence of Light on the Free Amino Acid Content and γ-Aminobutyric Acid Synthesis in Brassica juncea Seedlings. Journal of Agricultural and Food Chemistry, 2013, 61, 8624-8631.	5.2	29
59	Metabolic Differentiation of Diamondback Moth (Plutella xylostella (L.)) Resistance in Cabbage (Brassica oleracea L. ssp. <i>capitata</i>). Journal of Agricultural and Food Chemistry, 2013, 61, 11222-11230.	5.2	28
60	Characterization of Genes for a Putative Hydroxycinnamoyl-coenzyme A Quinate Transferase and <i>p</i> -Coumarate 3â€2-Hydroxylase and Chlorogenic Acid Accumulation in Tartary Buckwheat. Journal of Agricultural and Food Chemistry, 2013, 61, 4120-4126.	5.2	18
61	Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.). Journal of Agricultural and Food Chemistry, 2013, 61, 12356-12361.	5.2	79
62	Metabolomic Analysis and Phenylpropanoid Biosynthesis in Hairy Root Culture of Tartary Buckwheat Cultivars. PLoS ONE, 2013, 8, e65349.	2.5	38
63	Location and Number of Sampling for Optical Reflectance Measurement of Chinese Cabbage and Kale Leaves. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 241-246.	0.4	3
64	Variation of glucoraphanin and glucobrassicin: anticancer components in Brassica during processing. Food Science and Technology, 2013, 33, 624-631.	1.7	23
65	Glucosinolate Biosynthesis in Hairy Root Cultures of Broccoli (Brassica oleracea var. italica). Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	6
66	MYB Transcription Factors Regulate Glucosinolate Biosynthesis in Different Organs of Chinese Cabbage (Brassica rapa ssp. pekinensis). Molecules, 2013, 18, 8682-8695.	3.8	68
67	Resveratrol Production from Hairy Root Cultures of Scutellaria baicalensis. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
68	Cloning and Characterization of a cDNA Encoding Calcium/Calmodulin-Dependent Glutamate Decarboxylase from Scutellaria Baicalensis. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	0
69	Isolation and identification of alkaloids and anthocyanins from flower and bulb of Lycoris radiata using HPLC and LC-ESI-MS. Journal of Agricultural Chemistry and Environment, 2013, 02, 22-26.	0.5	5
70	Effect of 1-methylcyclopropene Treatment on Extension of Freshness and Storage Potential of Fresh Ginseng. Horticultural Science and Technology, 2013, 31, 308-316.	0.6	2
71	Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves. Korean Journal of Agricultural Science, 2013, 40, 163-167.	0.1	3
72	Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Natural Product Communications, 2013, 8, 217-20.	0.5	11

Sun-Ju Кім

#	Article	IF	CITATIONS
73	Oxidative Comparison of Emulsion Systems from Fish Oil-Based Structured Lipid versus Physically Blended Lipid with Purple-Fleshed Sweet Potato (Ipomoea batatas L.) Extracts. Journal of Agricultural and Food Chemistry, 2012, 60, 467-475.	5.2	21
74	Accumulation of Phenylpropanoids and Correlated Gene Expression during the Development of Tartary Buckwheat Sprouts. Journal of Agricultural and Food Chemistry, 2012, 60, 5629-5635.	5.2	52
75	Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i>). Journal of Agricultural and Food Chemistry, 2012, 60, 8111-8116.	5.2	70
76	Differential Expression of Anthocyanin Biosynthetic Genes and Anthocyanin Accumulation in Tartary Buckwheat Cultivars â€~Hokkai T8' and â€~Hokkai T10'. Journal of Agricultural and Food Chemistry, 2011 2356-2361.	, 5592	52
77	Anthocyanin Accumulation and Expression of Anthocyanin Biosynthetic Genes in Radish (<i>Raphanus) Tj ETQq1</i>	1 0.7843) 5.2	14 _. rgBT /Ove
78	Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Functional and Integrative Genomics, 2011, 11, 491-496.	3.5	51
79	Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chemistry, 2011, 128, 1115-1120.	8.2	38
80	HPLC-ELSD analysis of 18 platycosides from balloon flower roots (Platycodi Radix) sourced from various regions in Korea and geographical clustering of the cultivation areas. Food Chemistry, 2011, 129, 645-651.	8.2	43
81	Effects of lipase, lipoxygenase, peroxidase and free fatty acids on volatile compound found in boiled buckwheat noodles. Journal of the Science of Food and Agriculture, 2010, 90, 1232-1237.	3.5	26
82	Yam Contributes to Improvement of Glucose Metabolism in Rats. Plant Foods for Human Nutrition, 2009, 64, 193-198.	3.2	17
83	Timeâ^'Course Study and Effects of Drying Method on Concentrations of γ-Aminobutyric Acid, Flavonoids, Anthocyanin, and 2′′-Hydroxynicotianamine in Leaves of Buckwheats. Journal of Agricultural and Food Chemistry, 2009, 57, 259-264.	5.2	21
84	Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry, 2008, 110, 814-820.	8.2	157
85	A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 2007, 115, 13-18.	3.6	43
86	Identification of Anthocyanins in the Sprouts of Buckwheat. Journal of Agricultural and Food Chemistry, 2007, 55, 6314-6318.	5.2	65
87	Structural Elucidation of 4-(Cystein-S-yl)butyl Glucosinolate from the Leaves ofEruca sativa. Bioscience, Biotechnology and Biochemistry, 2007, 71, 114-121.	1.3	55
88	Structural Identification of Anthocyanins and Analysis of Concentrations during Growth and Flowering in Buckwheat (<i>Fagopyrum esculentum</i> Moench) Petals. Journal of Agricultural and Food Chemistry, 2007, 55, 9571-9575.	5.2	15
89	Changes in rutin concentration and flavonol-3-glucosidase activity during seedling growth in tartary buckwheat (<i>Fagopyrum tataricum</i> Gaertn.). Canadian Journal of Plant Science, 2007, 87, 83-87.	0.9	19
90	Effect of storage temperature and duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (Eruca sativa Mill.). Journal of the Science of Food and Agriculture, 2007, 87, 966-973.	3.5	38

Ѕим-Ји Кім

#	Article	IF	CITATIONS
91	Effect of Natural Light Periods on Rutin, Free Amino Acid and Vitamin C Contents in the Sprouts of Common (Fagopyrum esculentum Moench) and Tartary (F. tataricum Gaertn.) Buckwheats. Food Science and Technology Research, 2006, 12, 199-205.	0.6	42
92	Effect of Potato Starch Characteristics on the Textural Properties of Korean-style Cold Noodles Made from Wheat Flour and Potato Starch Blends. Food Science and Technology Research, 2006, 12, 278-283.	0.6	20
93	Effect of ammonium:Ânitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativaMill.). Soil Science and Plant Nutrition, 2006, 52, 387-393.	1.9	29
94	Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativaMill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Science and Plant Nutrition, 2006, 52, 394-400.	1.9	71
95	Determination of the phosphorus content in potato starch using an energy-dispersive X-ray fluorescence method. Food Chemistry, 2006, 95, 632-637.	8.2	57
96	Characterization of peroxidase in buckwheat seed. Phytochemistry, 2006, 67, 219-224.	2.9	54
97	Characterization of a flavonoid 3-O-glucosyltransferase and its activity during cotyledon growth in buckwheat (Fagopyrum esculentum). Plant Science, 2005, 169, 943-948.	3.6	35
98	Effects of Lipase, Lipoxygenase, Peroxidase, and Rutin on Quality Deteriorations in Buckwheat Flour. Journal of Agricultural and Food Chemistry, 2005, 53, 8400-8405.	5.2	19
99	Isolation and Structural Elucidation of 4-(β-D-Glucopyranosyldisulfanyl)butyl Glucosinolate from Leaves of Rocket Salad (Eruca sativaL.) and Its Antioxidative Activity. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2444-2450.	1.3	52
100	Clucosinolates in vegetative tissues and seeds of twelve cultivars of vegetable turnip rape (<i>Brassica rapa</i> L.). Soil Science and Plant Nutrition, 2003, 49, 337-346.	1.9	30
101	Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica ranal) Soil Science and Plant Nutrition, 2002, 48, 43-49	1.9	69