
Guan-Nan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis of novel in-situ micro/submicron-Cu paste for semiconductor interconnection. Nanotechnology, 2022, , .	2.6	4
2	Approaching the structure-property relationship of sintered metal nano/microparticles from the perspective of the agglomerate size effect. Powder Technology, 2022, 399, 117254.	4.2	8
3	Capillarity-promoted laser re-sintering of printed semisolid Cu nanoparticles for facile fabrication of conductive patterns with voidless structure and improved conductivity. Journal of Materials Research and Technology, 2022, 18, 2711-2720.	5.8	2
4	A Mini Review on the Microvia Filling Technology Based on Printed Metal Nano/Microparticles. Frontiers in Materials, 2022, 9, .	2.4	1
5	A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles. Nanomaterials, 2022, 12, 1063.	4.1	5
6	Improved understanding of the enhancement of sintering of mixtures of Cu microparticles and sn nanoparticles for electronic packaging. Journal of Materials Science: Materials in Electronics, 2022, 33, 11467-11474.	2.2	1
7	Improved Anti-Vulcanization and Bonding Performance of a Silver Alloy Bonding Wire by a Cathodic Passivation Treatment with Palladium. Materials, 2022, 15, 2355.	2.9	3
8	Effect of Ag coating on the oxidation resistance, sintering properties, and migration resistance of Cu particles. Journal of Alloys and Compounds, 2022, 923, 166271.	5.5	5
9	Size Refinement of Copper Nanoparticles: A Perspective from Electrochemical Nucleation and Growth Mechanism. ChemElectroChem, 2021, 8, 819-828.	3.4	15
10	A Quantitative Model to Understand the Effect of Gravity on the Warpage of Fan-Out Panel-Level Packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 2022-2030.	2.5	4
11	Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles. Ultrasonics Sonochemistry, 2021, 73, 105497.	8.2	34
12	Influence of in-situ and ex-situ precipitations on microstructure and mechanical properties of additive manufacturing CoCrFeMnNi high-entropy alloys. Vacuum, 2021, 187, 110111.	3.5	25
13	Study on Manufacturing Technology of Ag-8.5Au-3.5Pd Fine Alloy Wire. Micromachines, 2021, 12, 938.	2.9	3
14	A quantitative model to understand the microflow-controlled sintering mechanism of metal particles at nanometer to micron scale. Nanotechnology, 2021, 32, 505721.	2.6	9
15	Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model. Journal of Alloys and Compounds, 2021, 874, 159900.	5.5	17
16	Synergy effect of mixed sintering accelerator on the deoxidation and sintering property improvement of Cu nanoparticles at low temperature. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
17	Shear instability and considerably localized melting in quasi-static compression. Materials Characterization, 2020, 160, 110081.	4.4	3
18	Understanding the tensile fracture of deeply-notched metallic glasses. International Journal of Solids and Structures, 2020, 207, 70-81.	2.7	1

Guan-Nan Yang

#	Article	IF	CITATIONS
19	How does the structural inhomogeneity influence the shear band behaviours of metallic glasses. Philosophical Magazine, 2020, 100, 1663-1681.	1.6	3
20	Cryogenic charpy impact toughness of (Ti41Zr25Be26Ni8)93Cu7 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139442.	5.6	10
21	Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. Journal of Materials Science and Technology, 2019, 35, 2430-2434.	10.7	86
22	Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Applied Sciences (Switzerland), 2019, 9, 4277.	2.5	11
23	The effect of void defects on the shear band nucleation of metallic glasses. Intermetallics, 2018, 94, 114-118.	3.9	21
24	Understanding the effects of Poisson's ratio on the shear band behavior and plasticity of metallic glasses. Journal of Materials Science, 2017, 52, 6789-6799.	3.7	14
25	Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. Journal of Materials Chemistry A, 2017, 5, 14230-14240.	10.3	74
26	The multiple shear bands and plasticity in metallic glasses: A possible origin from stress redistribution. Journal of Alloys and Compounds, 2017, 695, 3457-3466.	5.5	17
27	Size effect in Pd77.5Cu6Si16.5 metallic glass micro-wires: More scattered strength with decreasing diameter. Applied Physics Letters, 2017, 111, .	3.3	7
28	Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Physical Review B, 2017, 95, .	3.2	14
29	Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5395-5400.	2.2	13
30	The shear band controlled deformation in metallic glass: a perspective from fracture. Scientific Reports, 2016, 6, 21852.	3.3	22
31	Serration behaviours in metallic glasses with different plasticity. Philosophical Magazine, 2016, 96, 2243-2255.	1.6	23
32	The material-dependence of plasticity in metallic glasses: An origin from shear band thermology. Materials and Design, 2016, 96, 189-194.	7.0	13
33	A non-viscous-featured fractograph in metallic glasses. Philosophical Magazine, 2016, 96, 542-550.	1.6	2
34	A study of cooling process in bulk metallic glasses fabrication. AIP Advances, 2015, 5, .	1.3	14
35	A quinary Ti–Zr–Hf–Be–Cu high entropy bulk metallic glass with a critical size of 12Âmm. Intermetallics, 2015, 61, 47-50.	3.9	78
36	Enhanced plasticity of a Fe-based bulk amorphous alloy by thin Ni coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 318-322.	5.6	11

#	Article	IF	CITATIONS
37	Nanocrystalline Phase Formation inside Shear Bands of Pd-Cu-Si Metallic Glass. Advances in Materials Science and Engineering, 2014, 2014, 1-4.	1.8	4
38	Direct experimental evidence of nano-voids formation and coalescence within shear bands. Applied Physics Letters, 2014, 105, 181909.	3.3	51
39	Understanding the sintering and heat dissipation behaviours of Cu nanoparticles during low-temperature selective laser sintering process on flexible substrates. Journal Physics D: Applied Physics, 0, , .	2.8	14