Takuya Kinoshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513398/publications.pdf

Version: 2024-02-01

1937685 1872680 54 66 4 6 citations g-index h-index papers 54 54 54 41 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design of a Data-Driven Controller using Open-Loop Data. Proceedings of International Conference on Artificial Life and Robotics, 2021, 26, 125-128.	0.1	О
2	Design of a Data-Driven Control System for Reference Model Design using Predicted Signals. Proceedings of International Conference on Artificial Life and Robotics, 2021, 26, 113-116.	0.1	0
3	Design of an Internal Model Control System based on the Database-Driven Modeling for a Hydraulic Excavator. IEEJ Transactions on Electronics, Information and Systems, 2021, 141, 295-300.	0.2	3
4	Practical Control Performance Index with Weighting Factors of Controller. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 1447-1449.	1.4	0
5	Design of a Dataâ€Driven Control System Simultaneously Estimating Disturbance Signal Based on M s Robustness. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 1420-1428.	1.4	O
6	Design of a Database-Driven Kansei Feedback Control System with Determination Mechanism of Learning Rate., 2021,,.		0
7	Anomaly Detection based on Control Performance Index. , 2021, , .		O
8	Design of a Data-Driven Multi Controllers Using VRFT and Ensemble Learning. Proceedings of International Conference on Artificial Life and Robotics, 2020, 25, 787-790.	0.1	0
9	Design of a Database-Driven Control System based on the Similarity. IEEJ Transactions on Electronics, Information and Systems, 2020, 140, 312-319.	0.2	3
10	Study on an Adaptive Learning Support System Design based on Model-based Development. , 2020, , .		0
11	Design of a Data-Oriented Performance Driven Control System Based on the Generalized Minimum Variance Control Law. Industrial & Engineering Chemistry Research, 2019, 58, 11440-11451.	3.7	6
12	Feature extraction and Classification of Learners using Multi-Context Recurrent Neural Networks. , 2019, , .		1
13	Feature Extraction and Classification of Learners Using Neural Networks. , 2019, , .		O
14	Design of a PID Controller using a Fictitious Exogenous Signal for a Fluctuation System. Proceedings of International Conference on Artificial Life and Robotics, 2019, 24, 459-462.	0.1	0
15	Design of a Data-Driven Controller with Evaluating Controller Performance. Proceedings of International Conference on Artificial Life and Robotics, 2019, 24, 467-470.	0.1	O
16	Design of a Data-Driven Controller with Evaluating Controller Performance. Journal of Robotics, Networking and Artificial Life, 2019, 5, 257.	0.4	2
17	Design of a PID Controller using a Fictitious Exogenous Signal for a Fluctuation System. Journal of Robotics, Networking and Artificial Life, 2019, 6, 118.	0.4	O
18	Design of a Data-Driven Two-Degree-of-Freedom Control System Considering Robustness. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 1285-1292.	0.2	1

#	Article	IF	Citations
19	System Change Detection Method Using Recurrent Neural Networks. Electronics and Communications in Japan, 2018, 101, 39-46.	0.5	1
20	Design of a Data-Driven Two-Degree-of-Freedom Control System Considering Robustness. , 2018, , .		1
21	Design of a Performance-Driven Control System Based on the Control Assessment. , 2018, , .		1
22	Design of a Data-Driven Control System based on the Abnormality using Kernel Density Estimation. , 2018, , .		0
23	Design of a Data-Oriented PID controller for a Two Degree of Freedom Control System. IFAC-PapersOnLine, 2018, 51, 412-415.	0.9	2
24	Design of a Vehicle Driver Model Based on Database-Driven Control Approach. , 2018, , .		2
25	Design of a Data-Driven Control System Based on the Abnormality Using Kernel Density Estimation. , 2018, , .		0
26	Design of a Two-Inertia Control System Using a Fictitious Exogenous Signal. , 2018, , .		0
27	Design of a Database-Driven Modeling Based on Variable Selection Using a Random Forest. , 2018, , .		0
28	Experimental Evaluation of a Data-Driven Control System using an Electronic Thermal Regulator. Journal of Robotics, Networking and Artificial Life, 2018, 5, 89.	0.4	0
29	Experimental Evaluation of a Data-Driven Control System using an Electronic Thermal Regulator. Proceedings of International Conference on Artificial Life and Robotics, 2018, 23, 314-317.	0.1	0
30	Design of a Performance-Driven PID Controller Using a Hierarchical-Clustering CMAC. Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and Its Applications, 2018, 2018, 78-85.	0.2	1
31	Design of a Vehicle Driver Model based on Database-Driven Control Approach. IEEJ Transactions on Electronics, Information and Systems, 2018, 138, 910-911.	0.2	1
32	Design of a performance-driven PID controller for a nonlinear system. , 2017, , .		1
33	Design of a performance-driven PID controller. , 2017, , .		0
34	Design of a Performance-Driven Controller with 1-Parameter tuning. IFAC-PapersOnLine, 2017, 50, 13934-13939.	0.9	0
35	Design and experimental evaluation of a data-oriented cascade control system. , 2017, , .		2
36	Frequency analysis of control error signal based on minimum variance control., 2017,,.		0

#	Article	IF	Citations
37	Design of a Performance-Driven CMAC PID Controller. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A, 2963-2971.	0.3	O
38	Design of a Data-Oriented Kansei Feedback System. Proceedings of International Conference on Artificial Life and Robotics, 2017, 22, 429-432.	0.1	1
39	Design of a Data-Oriented Kansei Feedback Control System. Journal of Robotics, Networking and Artificial Life, 2017, 4, 14.	0.4	2
40	Design of a Performance-Driven Control System Using a Support Vector Machine. IEEJ Transactions on Electronics, Information and Systems, 2017, 137, 89-95.	0.2	1
41	A design of data-driven PID controller based on steady-state performance. , 2016, , .		1
42	An Adjustment of Reference Tracking PID Controllers for a First-order System with a Dead Time. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 676-682.	0.2	1
43	Design and Experimental Evaluation of a Performance-Driven PID Controller. Journal of Robotics and Mechatronics, 2016, 28, 616-624.	1.0	6
44	Data-Driven Torque Controller for a Hydraulic Excavator. Journal of Robotics and Mechatronics, 2016, 28, 752-758.	1.0	9
45	Design and Experiment Evaluation of a Performance-Driven Control System Using a FRIT. Transactions of the Institute of Systems Control and Information Engineers, 2016, 29, 202-209.	0.1	6
46	Design of a Data-Driven Control System for a Hydraulic Excavator. Proceedings of International Conference on Artificial Life and Robotics, 2016, 21, 393-396.	0.1	2
47	Design of a Data-Oriented Cascade Control System. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 703-709.	0.2	0
48	Design of a Data-Oriented Control System for Walking Support. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 1013-1014.	0.2	0
49	Design of a Smart Adaptive Control System. IFAC-PapersOnLine, 2015, 48, 1309-1314.	0.9	1
50	A practical control performance index and PID controller design. , 2015, , .		2
51	Design and experimental evaluation of a predictive PID controller. , 2015, , .		0
52	Design of a smart adaptive control system based on control performance evaluation. , 2014, , .		1
53	Performance-Driven PID Control based upon Discrete-Time IMC Tuning. IEEJ Transactions on Electronics, Information and Systems, 2014, 134, 1221-1227.	0.2	2
54	Databaseâ€driven practical online adjustment of PID parameters. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	1.4	3