Rodrigo Moore-Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agro-industrial Waste Products as Mycotoxin Biosorbents: A Review of <i>in Vitro</i> and <i>in Vivo</i> Studies. Food Reviews International, 2023, 39, 2914-2930.	4.3	2
2	Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells, 2022, 11, 1014.	1.8	22
3	Endothelial transmigration of platelets depends on soluble factors released by activated endothelial cells and monocytes. Platelets, 2021, 32, 1-7.	1.1	3
4	Gestational diabesity and foetoplacental vascular dysfunction. Acta Physiologica, 2021, 232, e13671.	1.8	25
5	mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. International Journal of Molecular Sciences, 2021, 22, 8149.	1.8	33
6	Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 3287.	1.8	16
7	Role of Platelet Activation and Oxidative Stress in the Evolution of Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 509-520.	1.0	40
8	Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins and Other Lipid Mediators, 2019, 145, 106382.	1.0	24
9	SASP-Dependent Interactions between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 5292.	1.8	14
10	Effects of <i>Phaseolus vulgaris</i> Extract on Lipolytic Activity and Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes: A Strategy to Prevent Obesity. Journal of Nutrition and Metabolism, 2019, 2019, 1-8.	0.7	13
11	Phaseolus vulgaris Exerts an Inhibitory Effect on Platelet Aggregation through AKT Dependent Way. Preventive Nutrition and Food Science, 2018, 23, 102-107.	0.7	7
12	The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis. Frontiers in Oncology, 2017, 7, 188.	1.3	17
13	Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoEâ^'/â^' Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	14
14	High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia. Journal of Obesity, 2014, 2014, 1-7.	1.1	9
15	Effect of Tomato Industrial Processing (Different Hybrids, Paste, and Pomace) on Inhibition of Platelet Function <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> . Journal of Medicinal Food, 2014, 17, 505-511.	0.8	17
16	Role of PPARs in inflammatory processes associated with metabolic syndrome (Review). Molecular Medicine Reports, 2013, 8, 1611-1616.	1.1	68
17	Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases. Mediators of Inflammation, 2013, 2013, 1-18.	1.4	257
18	Gene expression of adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome (Review). Molecular Medicine Reports, 2012, 5, 1135-40.	1.1	11

#	Article	IF	CITATIONS
19	Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity. Blood Coagulation and Fibrinolysis, 2012, 23, 109-117.	0.5	48
20	Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric Oxide - Biology and Chemistry, 2011, 24, 224-228.	1.2	54
21	Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagulation and Fibrinolysis, 2011, 22, 197-205.	0.5	60
22	EL CONSUMO DE FRUTAS Y HORTALIZAS AYUDA A PREVENIR EL DAÑO ENDOTELIAL. Revista Chilena De Nutricion, 2011, 38, 343-355.	0.1	2
23	High levels of hsCRP are associated with carbohydrate metabolism disorder. Journal of Clinical Laboratory Analysis, 2011, 25, 375-381.	0.9	3
24	ACTIVIDAD ANTIOXIDANTE, HIPOLIPEMIANTE Y ANTIPLAQUETARIA DEL TOMATE (Solanum lycopersicum L.) Y EL EFECTO DE SU PROCESAMIENTO Y ALMACENAJE. Revista Chilena De Nutricion, 2010, 37, 524-533.	0.1	7
25	EL CONSUMO DE MANZANAS CONTRIBUYE A PREVENIR EL DESARROLLO DE ENFERMEDADES CARDIOVASCULARES Y CÃNCER: ANTECEDENTES EPIDEMIOLÓGICOS Y MECANISMOS DE ACCIÓN. Revista Chilena De Nutricion, 2010, 37, .	0.1	3
26	High-sensitivity C-reactive protein and liver enzymes in individuals with Metabolic Syndrome in Talca, Chile. Experimental and Therapeutic Medicine, 2010, 1, 175-179.	0.8	6
27	Eighteen-Week Exercise and Nutritional Education Program Did Not Modify the Serum Levels of sVCAM-1 and sCD40-L in Subjects with Metabolic Syndrome. Laboratory Medicine, 2010, 41, 231-234.	0.8	1
28	Physical activity reduces circulating TNF-alpha but not pro-thrombotic factors levels in patients with metabolic syndrome. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2010, 4, 234-238.	1.8	3
29	Intervention with education and exercise reverses the metabolic syndrome in adults. Journal of the American Society of Hypertension, 2010, 4, 148-153.	2.3	36
30	Pathophysiology of the proatherothrombotic state in the metabolic syndrome. Frontiers in Bioscience - Scholar, 2010, S2, 194-208.	0.8	21
31	EFECTO ANTIOXIDANTE DE FRUTAS Y HORTALIZAS DE LA ZONA CENTRAL DE CHILE. Revista Chilena De Nutricion, 2009, 36, .	0.1	9
32	Increased concentration of plasminogen activator inhibitor-1 and fibrinogen in individuals with metabolic syndrome. Molecular Medicine Reports, 2009, 2, 253-7.	1.1	14
33	Evaluation of metabolic syndrome in adults of Talca city, Chile. Nutrition Journal, 2008, 7, 14.	1.5	32
34	A high fat diet in CF-1 mice: An experimental model for metabolic syndrome. Molecular Medicine Reports, 2008, 1, 401-5.	1.1	3
35	Peroxisome proliferator-activated receptors: Targets for the treatment of metabolic illnesses (Review). Molecular Medicine Reports, 2008, 1, 317-24.	1.1	5
36	Targets in clinical oncology: the metabolic environment of the patient. Frontiers in Bioscience - Landmark, 2007, 12, 3024.	3.0	18

#	Article	IF	CITATIONS
37	Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clinical Nutrition, 2007, 26, 614-618.	2.3	58
38	The AP-1/CJUN signaling cascade is involved in muscle differentiation: Implications in muscle wasting during cancer cachexia. FEBS Letters, 2006, 580, 691-696.	1.3	26
39	Hemostasis alterations in metabolic syndrome (review). International Journal of Molecular Medicine, 2006, 18, 969-74.	1.8	59
40	Prevalence of heparin-induced antibodies in patients with chronic renal failure undergoing hemodialysis. Journal of Clinical Laboratory Analysis, 2005, 19, 189-195.	0.9	35
41	Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. American Journal of Physiology - Cell Physiology, 2005, 288, C1264-C1272.	2.1	67
42	Anticachectic Effects of Formoterol. Cancer Research, 2004, 64, 6725-6731.	0.4	148
43	The systemic inflammatory response is involved in the regulation of K+channel expression in brain via TNF-1±-dependent and -independent pathways. FEBS Letters, 2004, 572, 189-194.	1.3	26
44	Catabolic mediators as targets for cancer cachexia. Drug Discovery Today, 2003, 8, 838-844.	3.2	43
45	Cancer cachexia: the molecular mechanisms. International Journal of Biochemistry and Cell Biology, 2003, 35, 405-409.	1.2	102
46	Effects of the PPARÎ ³ agonist GW1929 on muscle wasting in tumour-bearing mice. Oncology Reports, 0, , .	1.2	4
47	Peroxisome proliferator-activated receptors: Targets for the treatment of metabolic illnesses (Review). Molecular Medicine Reports, 0, , .	1.1	8