Mario Ochoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	3.7	134
2	Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers, 2021, 13, 3484.	3.7	86
3	Physical Passivation of Grain Boundaries and Defects in Perovskite Solar Cells by an Isolating Thin Polymer. ACS Energy Letters, 2021, 6, 2626-2634.	17.4	81
4	High-Mobility In ₂ O ₃ :H Electrodes for Four-Terminal Perovskite/CuInSe ₂ Tandem Solar Cells. ACS Nano, 2020, 14, 7502-7512.	14.6	54
5	Challenges and opportunities for an efficiency boost of next generation Cu(In,Ga)Se ₂ solar cells: prospects for a paradigm shift. Energy and Environmental Science, 2020, 13, 2047-2055.	30.8	30
6	Recent Advances in Biomedical Photonic Sensors: A Focus on Optical-Fibre-Based Sensing. Sensors, 2021, 21, 6469.	3.8	28
7	Silverâ€Promoted Highâ€Performance (Ag,Cu)(In,Ga)Se ₂ Thinâ€Film Solar Cells Grown at Very Low Temperature. Solar Rrl, 2021, 5, 2100108.	5.8	24
8	Theoretical and experimental assessment of thinned germanium substrates for III–V multijunction solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 1097-1106.	8.1	20
9	Degradation of subcells and tunnel junctions during growth of GaInP/Ga(In)As/GaNAsSb/Ge 4â€ j unction solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 887-895.	8.1	19
10	Degradation of Ge subcells by thermal load during the growth of multijunction solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 102-111.	8.1	19
11	Shaping Perovskites: <i>In Situ</i> Crystallization Mechanism of Rapid Thermally Annealed, Prepatterned Perovskite Films. ACS Applied Materials & Interfaces, 2021, 13, 6854-6863.	8.0	17
12	Influence of Ga back grading on voltage loss in lowâ€ŧemperature coâ€evaporated Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 2021, 29, 630-637.	8.1	15
13	Charge Carrier Lifetime Fluctuations and Performance Evaluation of Cu(In,Ga)Se ₂ Absorbers via Timeâ€Resolvedâ€Photoluminescence Microscopy. Advanced Energy Materials, 2022, 12, .	19.5	15
14	Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Gaâ€Gradient in Cu(In,Ga)Se ₂ Solar Cells. Advanced Energy Materials, 2021, 11, 2003446.	19.5	14
15	On the thermal degradation of tunnel diodes in multijunction solar cells. AIP Conference Proceedings, 2017, , .	0.4	10
16	Modelling of lattice matched dilute nitride 4-junction concentrator solar cells on Ge substrates. AIP Conference Proceedings, 2016, , .	0.4	7
17	Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Gaâ€Graded Cu(In,Ga)Se ₂ Solar Cells. Advanced Functional Materials, 2021, 31, 2103663.	14.9	7
18	On the use of graphene to improve the performance of concentrator Illâ€V multijunction solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 60-70.	8.1	6

MARIO OCHOA

#	Article	IF	CITATIONS
19	ALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cells. EPJ Photovoltaics, 2020, 11, 12.	1.6	6
20	Effect of Sb on the quantum efficiency of GaInP solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 1116-1122.	8.1	5
21	Impact of the III-V/Ge nucleation routine on the performance of high efficiency multijunction solar cells. Solar Energy Materials and Solar Cells, 2020, 207, 110355.	6.2	5
22	Lateral Charge Carrier Transport in Cu(In,Ga)Se ₂ Studied by Timeâ€Resolved Photoluminescence Mapping. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100313.	2.4	5
23	Energy yield determination of concentrator solar cells using laboratory measurements. AIP Conference Proceedings, 2015, , .	0.4	3
24	Lowering perimeter recombination losses in micro-concentrator solar cells: A simulation study. AIP Conference Proceedings, 2018, , .	0.4	2
25	Thinned Germanium Substrates for III-V Multijunction Solar Cells. , 2019, , .		1