Pamela J Mclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512945/publications.pdf Version: 2024-02-01

DAMELA I MCLEAN

#	Article	IF	CITATIONS
1	Melanocortin 1 receptor activation protects against alpha-synuclein pathologies in models of Parkinson's disease. Molecular Neurodegeneration, 2022, 17, 16.	10.8	8
2	<i>In Vivo</i> Detection of Extracellular Adenosine Triphosphate in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 655-664.	3.4	16
3	Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson's disease. Gut Microbes, 2021, 13, 1866974.	9.8	61
4	APOE4 exacerbates $\hat{l}\pm$ -synuclein pathology and related toxicity independent of amyloid. Science Translational Medicine, 2020, 12, .	12.4	90
5	Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Molecular Neurodegeneration, 2020, 15, 5.	10.8	112
6	Increased Immune Activation by Pathologic α‧ynuclein in Parkinson's Disease. Annals of Neurology, 2019, 86, 593-606.	5.3	95
7	Cellular models of alphaâ€synuclein toxicity and aggregation. Journal of Neurochemistry, 2019, 150, 566-576.	3.9	75
8	InÂVivo Protein Complementation Demonstrates Presynaptic α-Synuclein Oligomerization and Age-Dependent Accumulation of 8–16-mer Oligomer Species. Cell Reports, 2019, 29, 2862-2874.e9.	6.4	26
9	CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nature Communications, 2019, 10, 53.	12.8	81
10	Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice. EBioMedicine, 2018, 29, 13-22.	6.1	26
11	14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein. Journal of Neuroscience, 2018, 38, 8211-8232.	3.6	48
12	Lewy body dementia. , 2017, , 175-198.		2
13	Diagnosis and management of dementia with Lewy bodies. Neurology, 2017, 89, 88-100.	1.1	2,805
14	Histones facilitate α-synuclein aggregation during neuronal apoptosis. Acta Neuropathologica, 2017, 133, 547-558.	7.7	20
15	Impaired endo-lysosomal membrane integrity accelerates the seeding progression of $\hat{1}\pm$ -synuclein aggregates. Scientific Reports, 2017, 7, 7690.	3.3	73
16	Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain. Acta Neuropathologica Communications, 2017, 5, 51.	5.2	24
17	Investigation of Endocytic Pathways for the Internalization of Exosome-Associated Oligomeric Alpha-Synuclein. Frontiers in Neuroscience, 2017, 11, 172.	2.8	91
18	The Golgi-localized, gamma ear-containing, ARF-binding (GGA) protein family alters alpha synuclein (α-syn) oligomerization and secretion. Aging, 2017, 9, 1677-1697.	3.1	7

#	Article	IF	CITATIONS
19	The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4708-15.	7.1	38
20	Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy. Biochemical and Biophysical Research Communications, 2016, 477, 76-82.	2.1	4
21	Proaggregant nuclear factor(s) trigger rapid formation of α-synuclein aggregates in apoptotic neurons. Acta Neuropathologica, 2016, 132, 77-91.	7.7	27
22	Biomarkers in Parkinson's disease: Advances and strategies. Parkinsonism and Related Disorders, 2016, 22, S106-S110.	2.2	124
23	Commentary: alpha-synuclein interacts with SOD1 and promotes its oligomerization. Journal of Neurology and Neuromedicine, 2016, 1, 28-30.	0.9	9
24	Transmission of Soluble and Insoluble α-Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	1.7	14
25	Transmission of Soluble and Insoluble α-Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	1.7	25
26	DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. European Journal of Neurology, 2015, 22, 1323-1325.	3.3	21
27	α-synuclein interacts with SOD1 and promotes its oligomerization. Molecular Neurodegeneration, 2015, 10, 66.	10.8	29
28	Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiology of Aging, 2015, 36, 1209-1220.	3.1	32
29	Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiology of Disease, 2015, 78, 172-195.	4.4	200
30	Targeting Î \pm -synuclein oligomers by protein-fragment complementation for drug discovery in synucleinopathies. Expert Opinion on Therapeutic Targets, 2015, 19, 589-603.	3.4	31
31	Chaperones in Neurodegeneration. Journal of Neuroscience, 2015, 35, 13853-13859.	3.6	81
32	Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies. Neurology, 2015, 85, 1680-1686.	1.1	31
33	Untangling a Role for Tau in Synucleinopathies. Biological Psychiatry, 2015, 78, 666-667.	1.3	2
34	Mutual exacerbation of peroxisome proliferatorâ€activated receptor γ coactivator 1α deregulation and αâ€synuclein oligomerization. Annals of Neurology, 2015, 77, 15-32.	5.3	112
35	A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo. Frontiers in Neuroscience, 2015, 9, 511.	2.8	5
36	Chronic Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine Levels but Not α-Synuclein-Induced Neuronal Cell Loss. PLoS ONE, 2014, 9, e86048.	2.5	35

#	Article	IF	CITATIONS
37	Direct Visualization of CHIP-Mediated Degradation of Alpha-Synuclein In Vivo: Implications for PD Therapeutics. PLoS ONE, 2014, 9, e92098.	2.5	14
38	Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Regulates the Stability and Function of GluA1 α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) Receptor in Neurons. PLoS ONE, 2014, 9, e113237.	2.5	28
39	Alpha-synuclein and tau: teammates in neurodegeneration?. Molecular Neurodegeneration, 2014, 9, 43.	10.8	216
40	Convergence of pathology in dementia with Lewy bodies and Alzheimer's disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain, 2014, 137, 1958-1970.	7.6	44
41	Targeting heat shock proteins to modulate α-synuclein toxicity. Therapeutic Advances in Neurological Disorders, 2014, 7, 33-51.	3.5	53
42	α-Synuclein Multimers Cluster Synaptic Vesicles and Attenuate Recycling. Current Biology, 2014, 24, 2319-2326.	3.9	210
43	Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathologica Communications, 2013, 1, 6.	5.2	49
44	Development and Screening of Contrast Agents for In Vivo Imaging of Parkinson's Disease. Molecular Imaging and Biology, 2013, 15, 585-595.	2.6	21
45	α‣ynuclein oligomers and clinical implications for Parkinson disease. Annals of Neurology, 2013, 73, 155-169.	5.3	255
46	Molecular Chaperones as Potential Therapeutic Targets for Neurological Disorders. RSC Drug Discovery Series, 2013, , 392-413.	0.3	1
47	Alpha-synuclein's degradation in vivo. Autophagy, 2012, 8, 281-283.	9.1	50
48	Alpha-synuclein aggregation involves a bafilomycin A ₁ -sensitive autophagy pathway. Autophagy, 2012, 8, 754-766.	9.1	111
49	SIRT1 Protects against $\hat{l}\pm$ -Synuclein Aggregation by Activating Molecular Chaperones. Journal of Neuroscience, 2012, 32, 124-132.	3.6	191
50	Molecular Chaperones and Co-Chaperones in Parkinson Disease. Neuroscientist, 2012, 18, 589-601.	3.5	47
51	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
52	Exosomal cell-to-cell transmission of alpha synuclein oligomers. Molecular Neurodegeneration, 2012, 7, 42.	10.8	708
53	Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathologica, 2012, 124, 153-172.	7.7	213
54	Heatâ€shock protein 70 modulates toxic extracellular αâ€synuclein oligomers and rescues transâ€synaptic toxicity. FASEB Journal, 2011, 25, 326-336.	0.5	276

#	Article	IF	CITATIONS
55	Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies. Cell, 2011, 146, 37-52.	28.9	1,097
56	Studying protein degradation pathways in vivo using a cranial window-based approach. Methods, 2011, 53, 194-200.	3.8	4
57	Molecular Chaperones in Parkinson's Disease – Present and Future. Journal of Parkinson's Disease, 2011, 1, 299-320.	2.8	63
58	Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5). PLoS ONE, 2011, 6, e14695.	2.5	119
59	Characterization of Oligomer Formation of Amyloid-β Peptide Using a Split-luciferase Complementation Assay. Journal of Biological Chemistry, 2011, 286, 27081-27091.	3.4	65
60	Distinct Roles <i>In Vivo</i> for the Ubiquitin–Proteasome System and the Autophagy–Lysosomal Pathway in the Degradation of α-Synuclein. Journal of Neuroscience, 2011, 31, 14508-14520.	3.6	311
61	Drug Targets from Genetics: Alpha-Synuclein. CNS and Neurological Disorders - Drug Targets, 2011, 10, 712-723.	1.4	9
62	Molecular chaperones in Parkinson's disease-present and future. Journal of Parkinson's Disease, 2011, 1, 299-320.	2.8	29
63	Brain-Permeable Small-Molecule Inhibitors of Hsp90 Prevent α-Synuclein Oligomer Formation and Rescue α-Synuclein-Induced Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 849-857.	2.5	162
64	Converse modulation of toxic α-synuclein oligomers in living cells by N′-benzylidene-benzohydrazide derivates and ferric iron. Biochemical and Biophysical Research Communications, 2010, 391, 461-466.	2.1	52
65	In Vivo Imaging of α-Synuclein in Mouse Cortex Demonstrates Stable Expression and Differential Subcellular Compartment Mobility. PLoS ONE, 2010, 5, e10589.	2.5	49
66	Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. Journal of Clinical Investigation, 2009, 119, 3257-65.	8.2	158
67	Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. Journal of Neurochemistry, 2009, 109, 838-845.	3.9	91
68	α-Synuclein S129 Phosphorylation Mutants Do Not Alter Nigrostriatal Toxicity in a Rat Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2009, 68, 515-524.	1.7	111
69	Dopamine-Induced Conformational Changes in Alpha-Synuclein. PLoS ONE, 2009, 4, e6906.	2.5	59
70	A Minimal Promoter for the GABAA Receptor α6-Subunit Gene Controls Tissue Specificity. Journal of Neurochemistry, 2008, 74, 1858-1869.	3.9	24
71	Transcriptional dysregulation in a transgenic model of Parkinson disease. Neurobiology of Disease, 2008, 29, 515-528.	4.4	62
72	Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Experimental Neurology, 2008, 213, 315-325.	4.1	334

#	Article	IF	CITATIONS
73	CHIP Targets Toxic α-Synuclein Oligomers for Degradation. Journal of Biological Chemistry, 2008, 283, 17962-17968.	3.4	155
74	Targeted Overexpression of Human α-Synuclein Triggers Microglial Activation and an Adaptive Immune Response in a Mouse Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1149-1158.	1.7	295
75	Formation of Toxic Oligomeric Î \pm -Synuclein Species in Living Cells. PLoS ONE, 2008, 3, e1867.	2.5	354
76	Cellular and Molecular Mechanisms Underlying Parkinson's Disease: The Role of Molecular Chaperones. , 2008, , 51-68.		1
77	Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson's Disease. Science, 2007, 317, 516-519.	12.6	995
78	Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. Journal of Neurochemistry, 2007, 100, 070214184024010-???.	3.9	164
79	Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4246-4251.	7.1	244
80	Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation. Biochemical and Biophysical Research Communications, 2006, 351, 631-638.	2.1	180
81	Clinical and biochemical correlates of insoluble α-synuclein in dementia with Lewy bodies. Acta Neuropathologica, 2006, 111, 101-108.	7.7	55
82	Detection of novel intracellular Oâ€ s ynuclein oligomeric species by fluorescence lifetime imaging. FASEB Journal, 2006, 20, 2050-2057.	0.5	82
83	Caspase-3-derived C-terminal Product of Synphilin-1 Displays Antiapoptotic Function via Modulation of the p53-dependent Cell Death Pathway. Journal of Biological Chemistry, 2006, 281, 11515-11522.	3.4	34
84	Alpha-Synuclein and Chaperones in Dementia With Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2005, 64, 1058-1066.	1.7	55
85	Dendritic Spine Abnormalities in Amyloid Precursor Protein Transgenic Mice Demonstrated by Gene Transfer and Intravital Multiphoton Microscopy. Journal of Neuroscience, 2005, 25, 7278-7287.	3.6	524
86	The Co-chaperone Carboxyl Terminus of Hsp70-interacting Protein (CHIP) Mediates α-Synuclein Degradation Decisions between Proteasomal and Lysosomal Pathways. Journal of Biological Chemistry, 2005, 280, 23727-23734.	3.4	298
87	Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochemical and Biophysical Research Communications, 2004, 321, 665-669.	2.1	178
88	A single amino acid substitution differentiates Hsp70-dependent effects on α-synuclein degradation and toxicity. Biochemical and Biophysical Research Communications, 2004, 325, 367-373.	2.1	43
89	Hsp70 Reduces α-Synuclein Aggregation and Toxicity. Journal of Biological Chemistry, 2004, 279, 25497-25502.	3.4	460
90	Neuritic alterations and neural system dysfunction in Alzheimer's disease and dementia with Lewy bodies. Neurochemical Research, 2003, 28, 1683-1691.	3.3	34

#	Article	IF	CITATIONS
91	Dementia with Lewy bodies. , 2002, , 267-282.		0
92	An alternatively spliced form of rodent α-synuclein forms intracellular inclusions in vitro: role of the carboxy-terminus in α-synuclein aggregation. Neuroscience Letters, 2002, 323, 219-223.	2.1	31
93	Aspartate Mutations in Presenilin and γ-Secretase Inhibitors Both Impair Notch1 Proteolysis and Nuclear Translocation with Relative Preservation of Notch1 Signaling. Journal of Neurochemistry, 2002, 75, 583-593.	3.9	101
94	TorsinA and heat shock proteins act as molecular chaperones: suppression of αâ€synuclein aggregation. Journal of Neurochemistry, 2002, 83, 846-854.	3.9	318
95	A Close Association of TorsinA and α-Synuclein in Lewy Bodies. American Journal of Pathology, 2001, 159, 339-344.	3.8	110
96	Alpha-synuclein has an altered conformation and shows a tight intermolecular interaction with ubiquitin in Lewy bodies. Acta Neuropathologica, 2001, 102, 329-334.	7.7	31
97	Interaction of α-synuclein and synphilin-1: effect of Parkinson's disease-associated mutations. Journal of Neurochemistry, 2001, 77, 929-934.	3.9	65
98	Membrane Association and Protein Conformation of α-Synuclein in Intact Neurons. Journal of Biological Chemistry, 2000, 275, 8812-8816.	3.4	219
99	Rapid Notch1 Nuclear Translocation after Ligand Binding Depends on Presenilinâ€associated γâ€Secretase Activity. Annals of the New York Academy of Sciences, 2000, 920, 223-226.	3.8	29
100	Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience, 1999, 93, 433-439.	2.3	206
101	The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Molecular Brain Research, 1999, 69, 273-280.	2.3	69
102	Mapping of the α4 subunit gene (GABRA4) to human chromosome 4 defines an α2—α4—β1—γ1 gene clu further evidence that modern GABAA receptor gene clusters are derived from an ancestral cluster. Genomics, 1995, 26, 580-586.	ster: 2.9	69

7