Rolf Marschalek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MLL recombinome of acute leukemias in 2017. Leukemia, 2018, 32, 273-284.	7.2	527
2	The MLL recombinome of acute leukemias in 2013. Leukemia, 2013, 27, 2165-2176.	7.2	393
3	New insights to the MLL recombinome of acute leukemias. Leukemia, 2009, 23, 1490-1499.	7.2	363
4	Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnology Journal, 2015, 10, 647-653.	3.5	352
5	Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 763-774.	7.7	211
6	The MLL recombinome of acute leukemias. Leukemia, 2006, 20, 777-784.	7.2	196
7	Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. International Journal of Biochemistry and Cell Biology, 2012, 44, 620-628.	2.8	178
8	Diagnostic tool for the identification of <i>MLL</i> rearrangements including unknown partner genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 449-454.	7.1	175
9	Mechanisms of leukemogenesis by MLL fusion proteins. British Journal of Haematology, 2011, 152, 141-154.	2.5	158
10	Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia, 2009, 23, 1073-1079.	7.2	137
11	The AF4·MLL fusion protein is capable of inducing ALL in mice without requirement of MLL·AF4. Blood, 2010, 115, 3570-3579.	1.4	133
12	Exon/intron structure of the human ALLâ€4 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias. British Journal of Haematology, 1996, 93, 966-972.	2.5	119
13	The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. British Journal of Haematology, 1994, 86, 275-283.	2.5	106
14	A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene, 1999, 18, 4663-4671.	5.9	106
15	Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia, 2007, 21, 633-641.	7.2	102
16	Anti–platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood, 2021, 138, 1269-1277.	1.4	102
17	Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: The identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochemical and Biophysical Research Communications, 1991, 178, 1194-1201.	2.1	101
18	Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood, 2015, 126, 2676-2685.	1.4	100

#	Article	IF	CITATIONS
19	Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica, 2011, 96, 221-230.	3.5	98
20	Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation. Oncogene, 1998, 17, 3035-3044.	5.9	90
21	Exon/intron structure of the human AFâ€4 gene, a member of the AF â€4/ LAF â€4/ FMR â€2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. British Journal of Haematology, 1997, 98, 157-169.	2.5	86
22	The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. Blood, 2009, 113, 4011-4015.	1.4	85
23	ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood, 2011, 117, 2658-2667.	1.4	83
24	Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene, 2001, 20, 2900-2907.	5.9	76
25	The leukemogenic AF4–MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia, 2011, 25, 135-144.	7.2	73
26	Interaction of AF4 wild-type and AF4·MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology?. Oncogene, 2004, 23, 6237-6249.	5.9	68
27	Transfer RNA Genes: Landmarks for Integration of Mobile Genetic Elements in <i>Dictyostelium discoideum</i> . Science, 1989, 244, 1493-1496.	12.6	67
28	Genetically engineered CAR NK cells display selective cytotoxicity against FLT3â€positive Bâ€ALL and inhibit <i>in vivo</i> leukemia growth. International Journal of Cancer, 2019, 145, 1935-1945.	5.1	60
29	FISH-negative cryptic PML–RARA rearrangement detected by long-distance polymerase chain reaction and sequencing analyses: a case study and review of the literature. Cancer Genetics and Cytogenetics, 2010, 203, 278-283.	1.0	59
30	Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia, 2006, 20, 451-457.	7.2	57
31	Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways. Annals of Laboratory Medicine, 2016, 36, 85-100.	2.5	57
32	Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS Journal, 2010, 277, 1822-1831.	4.7	55
33	Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells. Nucleic Acids Research, 2010, 38, 5384-5395.	14.5	55
34	Combined effects of the two reciprocal t(4;11) fusion proteins MLL·AF4 and AF4·MLL confer resistance to apoptosis, cell cycling capacity and growth transformation. Oncogene, 2007, 26, 3352-3363.	5.9	51
35	Two independent gene signatures in pediatric t(4;11) acute lymphoblastic leukemia patients. European Journal of Haematology, 2009, 83, 406-419.	2.2	51
36	Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene. Oncogene, 2007, 26, 1361-1371.	5.9	49

#	Article	IF	CITATIONS
37	Childhood Secondary ALL after ALL Treatment Blood, 2005, 106, 852-852.	1.4	49
38	The distribution of <i><scp>MLL</scp></i> breakpoints correlates with outcome in infant acute leukaemia. British Journal of Haematology, 2013, 161, 224-236.	2.5	46
39	Transfer RNA genes from Dictyostelium discoideum are frequently associated with repetitive elements and contain consensus boxes in their 5′ and 3′-flanking regions. Journal of Molecular Biology, 1991, 222, 537-552.	4.2	45
40	Cell-based Analysis of Structure-Function Activity of Threonine Aspartase 1. Journal of Biological Chemistry, 2011, 286, 3007-3017.	3.4	45
41	Effective Targeting of the P53–MDM2 Axis in Preclinical Models of Infant <i>MLL</i> -Rearranged Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2015, 21, 1395-1405.	7.0	43
42	A highly specific and sensitive fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias. British Journal of Haematology, 2002, 116, 758-764.	2.5	42
43	Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions. Leukemia, 2019, 33, 2306-2340.	7.2	41
44	Clinical Implications of Minimal Residual Disease Detection in Infants With <i>KMT2A</i> -Rearranged Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. Journal of Clinical Oncology, 2021, 39, 652-662.	1.6	41
45	Vaccine-induced COVID-19 mimicry syndrome. ELife, 2022, 11, .	6.0	41
46	A specific deletion in the breakpoint cluster region of the ALL-1 gene is associated with acute lymphoblastic T-cell leukemias. Cancer Research, 1996, 56, 2171-7.	0.9	41
47	Mixed Lineage Leukemia–Rearranged Childhood Pro-B and CD10-Negative Pre-B Acute Lymphoblastic Leukemia Constitute a Distinct Clinical Entity. Clinical Cancer Research, 2006, 12, 2988-2994.	7.0	40
48	Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4 · MLL fusion allele. Leukemia, 2007, 21, 1232-1238.	7.2	40
49	A common 253â€kb deletion involving VWF and TMEM16B in German and Italian patients with severe von Willebrand disease type 3. Journal of Thrombosis and Haemostasis, 2007, 5, 722-728.	3.8	37
50	Ceramide synthases CerS4 and CerS5 are upregulated by 17β-estradiol and GPER1 via AP-1 in human breast cancer cells. Biochemical Pharmacology, 2014, 92, 577-589.	4.4	37
51	Activated <i>KRAS</i> Cooperates with MLL-AF4 to Promote Extramedullary Engraftment and Migration of Cord Blood CD34+ HSPC But Is Insufficient to Initiate Leukemia. Cancer Research, 2016, 76, 2478-2489.	0.9	37
52	Identification of a protein factor binding to the 5′-flanking region of a tRNA gene and being involved in modulation of tRNA gene transcriptionin vivoinSaccharomyces cerevisiae. Nucleic Acids Research, 1988, 16, 6737-6752.	14.5	36
53	Formation of autocrine loops in human cerebral meningioma tissue by leukemia inhibitor factor, interleukin-6, and oncostatin M: inhibition of meningioma cell growth in vitro by recombinant oncostatin M. Journal of Neurosurgery, 1998, 88, 541-548.	1.6	36
54	Acute leukemias with <i>ETV6/ABL1</i> (<i>TEL/ABL</i>) fusion: Poor prognosis and prenatal origin. Genes Chromosomes and Cancer, 2010, 49, 873-884.	2.8	36

#	Article	IF	CITATIONS
55	RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system. EMBO Journal, 1992, 11, 1487-92.	7.8	35
56	Functional characterisation of different MLL fusion proteins by using inducible Sleeping Beauty vectors. Cancer Letters, 2014, 352, 196-202.	7.2	34
57	Molecular dissection of t(11;17) in acute myeloid leukemia reveals a variety of gene fusions with heterogeneous fusion transcripts and multiple splice variants. Genes Chromosomes and Cancer, 2006, 45, 1041-1049.	2.8	33
58	Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for Upregulation of Hypoxia-Inducible Factor 1α and Epithelial–Mesenchymal Transition. Clinical Cancer Research, 2017, 23, 3896-3905.	7.0	33
59	The Structure of the Human ALL-1/MLL/HRX Gene. Leukemia and Lymphoma, 1997, 27, 417-428.	1.3	32
60	Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia, 2007, 21, 588-590.	7.2	32
61	The heterodimerization domains of MLL—FYRN and FYRC—are potential target structures in t(4;11) leukemia. Leukemia, 2011, 25, 663-670.	7.2	31
62	Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Cancer Research, 1999, 59, 3357-62.	0.9	31
63	Cryptic t(4;11) encoding MLL-AF4 due to insertion of 5′ MLL sequences in chromosome 4. Leukemia, 2001, 15, 595-600.	7.2	29
64	MLL Leukemia and Future Treatment Strategies. Archiv Der Pharmazie, 2015, 348, 221-228.	4.1	29
65	MLL-mediated transcriptional gene regulation investigated by gene expression profiling. Oncogene, 2003, 22, 3655-3668.	5.9	28
66	An Aluâ€mediated novel large deletion is the most frequent cause of typeÂ3 von Willebrand disease in Hungary. Journal of Thrombosis and Haemostasis, 2008, 6, 1729-1735.	3.8	28
67	High BRE expression in pediatric MLL-rearranged AML is associated with favorable outcome. Leukemia, 2010, 24, 2048-2055.	7.2	27
68	Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: A study of 7 patients and review of the literature. Blood Cells, Molecules, and Diseases, 2010, 44, 268-274.	1.4	27
69	Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells. Leukemia, 2014, 28, 666-674.	7.2	27
70	Targeted Next-Generation Sequencing for Detecting <i>MLL</i> Gene Fusions in Leukemia. Molecular Cancer Research, 2018, 16, 279-285.	3.4	27
71	Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Frontiers in Microbiology, 2021, 12, 701198.	3.5	27
72	NQO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms. Haematologica, 2004, 89, 1492-7.	3.5	27

#	Article	IF	CITATIONS
73	Childhood secondary ALL after ALL treatment. Leukemia, 2007, 21, 1431-1435.	7.2	26
74	Secondary mutations in t(4;11) leukemia patients. Leukemia, 2013, 27, 1425-1427.	7.2	26
75	Epigenetic regulator genes direct lineage switching inÂ <i>MLL/AF4</i> leukemia. Blood, 2022, 140, 1875-1890.	1.4	26
76	Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors. PLoS ONE, 2011, 6, e18253.	2.5	25
77	From a Multipotent Stilbene to Soluble Epoxide Hydrolase Inhibitors with Antiproliferative Properties. ChemMedChem, 2013, 8, 919-923.	3.2	25
78	Structure of DRE, a Retrotransposable Element Which Integrates with Position Specificity Upstream of <i>Dictyostelium discoideum</i> tRNA Genes. Molecular and Cellular Biology, 1992, 12, 229-239.	2.3	25
79	Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia. Blood, 2001, 98, 2272-2274.	1.4	24
80	Breakpoints of t(4;11) translocations in the humanMLL andAF4 genes in ALL patients are preferentially clustered outside of high-affinity matrix attachment regions. Journal of Cellular Biochemistry, 2001, 82, 299-309.	2.6	24
81	Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. British Journal of Haematology, 2002, 117, 315-321.	2.5	24
82	Inv(11)(q21q23) fuses MLL to the Notch co-activator mastermind-like 2 in secondary T-cell acute lymphoblastic leukemia. Leukemia, 2008, 22, 1807-1811.	7.2	23
83	Functional analysis of the two reciprocal fusion genes MLL-NEBL and NEBL-MLL reveal their oncogenic potential. Cancer Letters, 2013, 332, 30-34.	7.2	23
84	Subclonality and prenatal origin of <i><scp>RAS</scp></i> mutations in <i><scp>KMT</scp>2A (<scp>MLL</scp>)</i> â€rearranged infant acute lymphoblastic leukaemia. British Journal of Haematology, 2015, 170, 268-271.	2.5	23
85	How to effectively treat acute leukemia patients bearing MLL-rearrangements ?. Biochemical Pharmacology, 2018, 147, 183-190.	4.4	23
86	Inhibition of class I HDACs abrogates the dominant effect of MLL-AF4 by activation of wild-type MLL. Oncogenesis, 2014, 3, e127-e127.	4.9	22
87	Evidence-based RT-PCR methods for the detection of the 8 most common MLL aberrations in acute leukemias. Leukemia Research, 2015, 39, 242-247.	0.8	22
88	The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism. Oncotarget, 2016, 7, 35341-35352.	1.8	22
89	A family of non-allelic tRNAGUUVal genes from the cellular slime mold Dictyostelium discoideum. Gene, 1988, 73, 373-384.	2.2	21
90	Molecular analysis of the chromosomal breakpoint and fusion transcripts in the acute lymphoblastic SEM cell line with chromosomal translocation t(4;ll). British Journal of Haematology, 1995, 90, 308-320.	2.5	21

#	Article	IF	CITATIONS
91	Genomic DNA of leukemic patients: Target for clinical diagnosis ofMLL rearrangements. Biotechnology Journal, 2006, 1, 656-663.	3.5	21
92	KIAA1524: A novel MLL translocation partner in acute myeloid leukemia. Leukemia Research, 2011, 35, 133-135.	0.8	21
93	Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nature Communications, 2017, 8, 1099.	12.8	21
94	Clonal expansion of a new MLL rearrangement in the absence of leukemia. Blood, 2005, 105, 4151-4152.	1.4	20
95	Establishment of a System for Conditional Gene Expression Using an Inducible tRNA Suppressor Gene. Molecular and Cellular Biology, 1992, 12, 4038-4045.	2.3	20
96	Genetic and clinical characterization of 45 acute leukemia patients with <i>MLL</i> gene rearrangements from a single institution. Molecular Oncology, 2012, 6, 553-564.	4.6	19
97	Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget, 2016, 7, 30440-30452.	1.8	19
98	Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening. Molecules, 2022, 27, 1439.	3.8	19
99	tRNA ^{Glu} (GAA) Genes from the Cellular Slime Mold <i>Dictyostelium discoideum</i> . DNA and Cell Biology, 1989, 8, 193-204.	5.2	18
100	Recombination at chromosomal sequences involved in leukaemogenic rearrangements is differentially regulated by p53. Carcinogenesis, 2004, 25, 1305-1313.	2.8	18
101	Internally Located and Oppositely Oriented Polymerase II Promoters Direct Convergent Transcription of a LINE-Like Retroelement, the <i>Dictyostelium</i> Repetitive Element, from <i>Dictyostelium discoideum</i> . Molecular and Cellular Biology, 1994, 14, 3074-3084.	2.3	18
102	Premature transcript termination, trans-splicing and DNA repair: a vicious path to cancer. American Journal of Blood Research, 2011, 1, 1-12.	0.6	18
103	The human ALL-1/MLL/HRX antigen is predominantly localized in the nucleus of resting and proliferating peripheral blood mononuclear cells. Cancer Research, 1997, 57, 2035-41.	0.9	18
104	Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood, 2000, 95, 2722-4.	1.4	18
105	High IGSF4 expression in pediatric M5 acute myeloid leukemia with t(9;11)(p22;q23). Blood, 2011, 117, 928-935.	1.4	17
106	Genomic breakpoints and clinical features of MLL-TET1 rearrangement in acute leukemias. Haematologica, 2013, 98, e55-e57.	3.5	17
107	Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 175-189.	4.1	17
108	DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. American Journal of Blood Research, 2016, 6, 28-45.	0.6	17

#	Article	IF	CITATIONS
109	Outcomes for Australian children with relapsed/refractory acute lymphoblastic leukaemia treated with blinatumomab. Pediatric Blood and Cancer, 2021, 68, e28922.	1.5	16
110	Refinement of IKZF1 recombination hotspots in pediatric BCP-ALL patients. American Journal of Blood Research, 2013, 3, 165-73.	0.6	16
111	Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. Nucleic Acids Research, 1990, 18, 5751-5757.	14.5	15
112	C/EBPÎ ² suppression by interruption of CUGBP1 resulting from a complex rearrangement of MLL. Cancer Genetics and Cytogenetics, 2007, 177, 108-114.	1.0	15
113	A novel PML-ADAMTS17-RARA gene rearrangement in a patient with pregnancy-related acute promyelocytic leukemia. Leukemia Research, 2011, 35, e106-e110.	0.8	15
114	Diagnostic Usefulness of Genomic Breakpoint Analysis of Various Gene Rearrangements in Acute Leukemias: A Perspective of Long Distance– or Long Distance Inverse-PCR–based Approaches. Annals of Laboratory Medicine, 2012, 32, 316-318.	2.5	15
115	Enhanced hemato-endothelial specification during human embryonic differentiation through developmental cooperation between <i>AF4-MLL</i> and <i>MLL-AF4</i> fusions. Haematologica, 2019, 104, 1189-1201.	3.5	15
116	An alternative splice process renders MLL either into an transcriptional activator or repressor. Klinische Padiatrie, 2013, 225, 601-7.	0.6	15
117	Two distinct subforms of the retrotransposable DRE element in NC4 strains ofDictyostelium discoideum. Nucleic Acids Research, 1992, 20, 6247-6252.	14.5	14
118	An Interstitial Deletion at 3p21.3 Results in the Genetic Fusion of <i>MLH1</i> and <i>ITGA9</i> in a Lynch Syndrome Family. Clinical Cancer Research, 2009, 15, 762-769.	7.0	14
119	Covert preleukemia driven by <i>MLL</i> gene fusion. Genes Chromosomes and Cancer, 2009, 48, 98-107.	2.8	14
120	A three-way translocation of MLL, MLLT11, and the novel reciprocal partner gene MYO18A in a child with acute myeloid leukemia. Cancer Genetics, 2012, 205, 261-265.	0.4	14
121	Involvement of the <i>MLL</i> gene in adult Tâ€lymphoblastic leukemia. Genes Chromosomes and Cancer, 2012, 51, 1114-1124.	2.8	14
122	The Dictyostelium discoideum 5S rDNA Is Organized in the Same Transcriptional Orientation as the Other rDNAs. Biochemical and Biophysical Research Communications, 1993, 191, 558-564.	2.1	13
123	Three-way translocation involving MLL, MLLT1, and a novel third partner, NRXN1, in a patient with acute lymphoblastic leukemia and t(2;19;11) (p12;p13.3;q23). Cancer Genetics and Cytogenetics, 2010, 197, 32-38.	1.0	13
124	The AF4-MLL fusion transiently augments multilineage hematopoietic engraftment but is not sufficient to initiate leukemia in cord blood CD34+ cells. Oncotarget, 2017, 8, 81936-81941.	1.8	13
125	Multidimensional gas chromatography–mass spectrometry for tracer studies of fatty acid metabolism via stable isotopes in cultured human trophoblast cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 791, 235-244.	2.3	12
126	NRIP3: a novel translocation partner of MLL detected in a pediatric acute myeloid leukemia with complex chromosome 11 rearrangements. Haematologica, 2009, 94, 1033-1033.	3.5	12

#	Article	IF	CITATIONS
127	LDI-PCR: Identification of Known and Unknown Gene Fusions of the Human MLL Gene. Methods in Molecular Biology, 2009, 538, 71-83.	0.9	12
128	Do Non-Genomically Encoded Fusion Transcripts Cause Recurrent Chromosomal Translocations?. Cancers, 2012, 4, 1036-1049.	3.7	12
129	Submicroscopic Deletion of <i>FGFR1</i> Gene Is Recurrently Detected in Myeloid and Lymphoid Neoplasms Associated with <i>ZMYM2-FGFR1</i> Rearrangements: A Case Study. Acta Haematologica, 2012, 127, 119-123.	1.4	12
130	The reciprocal world of MLL fusions: A personal view. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194547.	1.9	12
131	Different organization of the tRNA-gene-associated repetitive element, DRE, in NC4-derived strains and in other wild-type Dictyostelium discoideum strains. FEBS Journal, 1993, 217, 627-631.	0.2	11
132	Nebulette is the second member of the nebulin family fused to the MLL gene in infant leukemia. Cancer Genetics and Cytogenetics, 2010, 198, 151-154.	1.0	11
133	De novo Acute Myeloid Leukemia Associated with t(11;17)(q23;q25) and <i>MLL</i> - <i>SEPT9 </i> Rearrangement in an Elderly Patient: A Case Study and Review of the Literature. Acta Haematologica, 2011, 126, 195-198.	1.4	11
134	Epigenetics and blood disorders. British Journal of Haematology, 2012, 158, 307-322.	2.5	11
135	Complex Three-Way Translocation Involving <i>MLL</i> , <i>ELL</i> , <i>RREB1</i> , and <i>CMAHP </i> Genes in an Infant with Acute Myeloid Leukemia and t(6:19:11)(p22.2:p13.1:q23.3). Cvtogenetic and Genome Research. 2013. 141. 7-15.	1.1	11
136	AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3. Oncotarget, 2015, 6, 25784-25800.	1.8	11
137	CASP8AP2 is a novel partner gene of MLL rearrangement with t(6;11)(q15;q23) in acute myeloid leukemia. Cancer Genetics and Cytogenetics, 2009, 195, 94-95.	1.0	10
138	<i>FLNA</i> , a new partner gene fused to <i>MLL</i> in a patient with acute myelomonoblastic leukaemia. British Journal of Haematology, 2009, 146, 693-695.	2.5	10
139	Acute monocytic leukaemia originating from <i>MLLâ€MLLT3</i> â€positive preâ€B cells. British Journal of Haematology, 2010, 150, 621-623.	2.5	10
140	A complex MLL rearrangement identified five years after initial MDS diagnosis results in out-of-frame fusions without progression to acute leukemia. Cancer Genetics, 2011, 204, 557-562.	0.4	10
141	<i>MLL-SEPT5</i> fusion transcript in infant acute myeloid leukemia with t(11;22)(q23;q11). Leukemia and Lymphoma, 2014, 55, 662-667.	1.3	10
142	In vivo inducible reverse genetics in patients' tumors to identify individual therapeutic targets. Nature Communications, 2021, 12, 5655.	12.8	10
143	CMER, an RNA encoded by human cytomegalovirus is most likely transcribed by RNA polymerise III. Nucleic Acids Research, 1989, 17, 631-643.	14.5	9
144	Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia, 2001, 15, 286-288.	7.2	9

#	Article	IF	CITATIONS
145	Infant acute bilineal leukemia. Leukemia Research, 2009, 33, 1005-1008.	0.8	9
146	Therapy-related acute myeloid leukemia with t(2;11)(q37;q23) after treatment for osteosarcoma. Cancer Genetics and Cytogenetics, 2010, 203, 288-291.	1.0	9
147	Nerve Injury Evoked Loss of Latexin Expression in Spinal Cord Neurons Contributes to the Development of Neuropathic Pain. PLoS ONE, 2011, 6, e19270.	2.5	9
148	TEL/AML1â€positive patients lacking TEL exon 5 resemble canonical TEL/AML1 cases. Pediatric Blood and Cancer, 2011, 56, 217-225.	1.5	9
149	Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein. EBioMedicine, 2015, 2, 386-395.	6.1	9
150	A new variant of KMT2A(MLL)-FLNA fusion transcript in acute myeloid leukemia with ins(X;11)(q28;q23q23). Cancer Genetics, 2015, 208, 148-151.	0.4	9
151	Identification and characterization of the elusive mutation causing the historical von Willebrand Disease type IIC Miami. Journal of Thrombosis and Haemostasis, 2016, 14, 1725-1735.	3.8	9
152	Molecular characterization of <i>KMT2A</i> fusion partner genes in 13 cases of pediatric leukemia with complex or cryptic karyotypes. Hematological Oncology, 2017, 35, 760-768.	1.7	9
153	<i>COBL</i> is a novel hotspot for <i>IKZF1</i> deletions in childhood acute lymphoblastic leukemia. Oncotarget, 2016, 7, 53064-53073.	1.8	9
154	AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions. American Journal of Blood Research, 2015, 5, 10-24.	0.6	9
155	Nucleotide Sequence of a Dictyostelium discoideum Gene Encoding a Protein Homologous to the Yeast Ribosomal Protein S31. Biochemical and Biophysical Research Communications, 1993, 190, 134-139.	2.1	8
156	A complex 1;19;11 translocation involving the MLL gene in a patient with congenital acute monoblastic leukemia identified by molecular and cytogenetic techniques. Annals of Hematology, 2009, 88, 795-797.	1.8	8
157	BTBD18: A novel MLL partner gene in an infant with acute lymphoblastic leukemia and inv(11)(q13;q23). Leukemia Research, 2010, 34, e294-e296.	0.8	8
158	Backtracking to birth of the NUP98-HOXD13 gene fusion in an infant acute myeloid leukemia. Leukemia, 2011, 25, 1192-1194.	7.2	8
159	Molecular characterization and clinical course of MLL-ACTN4 rearrangement in therapy-related hematologic malignancies. Haematologica, 2014, 99, e49-e51.	3.5	8
160	Molecular characterization and clinical impact of t(11;15)(q23;q14-15) MLL-CASC5 rearrangement. Haematologica, 2014, 99, e11-e13.	3.5	8
161	Identification of a <i>MLL–MLLT4</i> fusion gene resulting from a t(6;11)(q27;q23) presenting as a del(11q) in a child with T-cell acute lymphoblastic leukemia. Leukemia and Lymphoma, 2010, 51, 1570-1573.	1.3	7
162	<scp><i>CBL</i></scp> mutations do not frequently occur in paediatric acute myeloid leukaemia. British Journal of Haematology, 2012, 159, 577-584.	2.5	7

#	Article	IF	CITATIONS
163	<i>MLL–ELL</i> fusion gene in two infants with acute monoblastic leukemia and myeloid sarcoma. Leukemia and Lymphoma, 2012, 53, 1222-1224.	1.3	7
164	MLL partner genes in secondary acute lymphoblastic leukemia: Report of a new partner PRRC1 and review of the literature. Leukemia Research, 2014, 38, 1316-1319.	0.8	7
165	A case of pediatric acute myeloid leukemia with t(11;16)(q23;q24) leading to a novel KMT2Aâ€USP10 fusion gene. Genes Chromosomes and Cancer, 2018, 57, 522-524.	2.8	7
166	IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia. Translational Oncology, 2019, 12, 726-732.	3.7	7
167	Three-Way Translocations and Insertions Are the Molecular Basis for Complex MLL Rearrangements Blood, 2007, 110, 979-979.	1.4	7
168	A novel, negative selectable marker for gene disruption in Dictyostelium. Gene, 1997, 202, 171-176.	2.2	6
169	Acute promyelocytic leukemia with trisomy 8 showing normal PML-RARA FISH signal patterns: diagnostic application of long-distance polymerase chain reaction in molecularly discrepant leukemia cases. Annals of Hematology, 2012, 91, 1645-1648.	1.8	6
170	Abl-interactor 2 (ABI2): A novel MLL translocation partner in acute myeloid leukemia. Leukemia Research, 2012, 36, e113-e115.	0.8	6
171	Molecular studies reveal a MLL-MLLT3 gene fusion displaced in a case of childhood acute lymphoblastic leukemia with complex karyotype. Cancer Genetics, 2015, 208, 143-147.	0.4	6
172	TGFβ/SMAD signalling modulates MLL and MLL-AF4 mediated 5-lipoxygenase promoter activation. Prostaglandins and Other Lipid Mediators, 2017, 133, 60-67.	1.9	6
173	Prenatal origin of <scp>KRAS</scp> mutation in a child with an acute myelomonocytic leukaemia bearing the <i>KMT2A</i> / <i>MLLâ€AFDN</i> / <i>MLLT4</i> / <i>AF6</i> fusion transcript. British Journal of Haematology, 2019, 185, 563-566.	2.5	6
174	Another piece of the puzzle added to understand t(4;11) leukemia better. Haematologica, 2019, 104, 1098-1100.	3.5	6
175	Acute myeloid leukemia with t(10;11)(p11â€12;q23.3): Results of Russian Pediatric AML registration study. International Journal of Laboratory Hematology, 2019, 41, 287-292.	1.3	6
176	The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(4;11). Oncogene, 2021, 40, 6093-6102.	5.9	6
177	The differential role of the lipid raft-associated protein flotillin 2 for progression of myeloid leukemia. Blood Advances, 2022, 6, 3611-3624.	5.2	6
178	The immune checkpoint ICOSLG is a relapse-predicting biomarker and therapeutic target in infant t(4;11) acute lymphoblastic leukemia. IScience, 2022, , 104613.	4.1	6
179	Novel Diagnostic and Therapeutic Options for KMT2A-Rearranged Acute Leukemias. Frontiers in Pharmacology, 0, 13, .	3.5	6
180	MLL insertion with MLL-MLLT3 gene fusion in acute leukemia: case report and review of the literature. Cancer Genetics and Cytogenetics, 2008, 183, 53-59.	1.0	5

#	Article	IF	CITATIONS
181	It takes two-to-leukemia: About addictions and requirements. Leukemia Research, 2011, 35, 424-425.	0.8	5
182	Molecular methods for genomic analyses of variant <i>PML-RARA</i> or other <i>RARA</i> -related chromosomal translocations in acute promyelocytic leukemia. The Korean Journal of Hematology, 2012, 47, 307.	0.7	5
183	<i>TOP3A</i> , a new partner gene fused to <i>MLL</i> in an adult patient with de novo acute myeloid leukaemia. British Journal of Haematology, 2012, 157, 128-131.	2.5	5
184	<i>Complex MLL</i> rearrangement in nonâ€infiltrated bone marrow in an infant with stage II precursor Bâ€lymphoblastic lymphoma. European Journal of Haematology, 2014, 93, 349-353.	2.2	5
185	Lineage switch to acute myeloid leukemia during induction chemotherapy for early T-cell precursor acute lymphoblastic leukemia with the translocation t(6;11)(q27;q23)/KMT2A-AFDN: A case report. Leukemia Research, 2022, 112, 106758.	0.8	5
186	Nuclear factors which bind to Dictyostelium discoideum transfer RNA genes. Current Genetics, 1991, 20, 129-135.	1.7	4
187	Genomic analysis of a four-way t(4;11;22;10) associated with MLL-AF4 in an adult acute lymphoblastic leukemia. Annals of Hematology, 2012, 91, 977-979.	1.8	4
188	Analyzing acute leukemia patients with complex MLL rearrangements by a sequential LDI-PCR approach. Cancer Letters, 2013, 338, 249-254.	7.2	4
189	Clone-specific secondary aberrations are not detected in neonatal blood spots of children with ETV6-RUNX1-positive leukemia. Haematologica, 2013, 98, e108-e110.	3.5	4
190	Secondary acute monocytic leukemia positive for 11q23 rearrangement in Nijmegen breakage syndrome. Pediatric Blood and Cancer, 2014, 61, 1469-1471.	1.5	4
191	Characterization and cellular localization of human 5-lipoxygenase and its protein isoforms 5-LOΔ13, 5-LOΔ4 and 5-LOP12. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 561-571.	2.4	4
192	Frequent and reliable engraftment of certain adult primary acute lymphoblastic leukemias in mice. Leukemia and Lymphoma, 2019, 60, 848-851.	1.3	4
193	Structure of the promoter region of the gene encoding cytochrome c oxidase subunit V in Dictyostelium. FEBS Journal, 1993, 211, 411-414.	0.2	3
194	A MLL-KIAA0284 fusion gene in a patient with secondary acute myeloid leukemia and t(11;14)(q23;q32). Blood Cells, Molecules, and Diseases, 2008, 41, 210-214.	1.4	3
195	Characterisation of two novel large F8 deletions in patients with severe haemophilia A and factor VIII inhibitors. Thrombosis and Haemostasis, 2011, 105, 279-284.	3.4	3
196	Unique BHLHB3 overexpression in pediatric acute myeloid leukemia with t(6;11)(q27;q23). Leukemia, 2014, 28, 1564-1568.	7.2	3
197	Therapy-related acute myeloid leukemia with KMT2A-SNX9 gene fusion associated with a hyperdiploid karyotype after hemophagocytic lymphohistiocytosis. Cancer Genetics, 2021, 256-257, 86-90.	0.4	3
198	MLL genomic DNA Breakpoints In Infant Acute Leukemia. Blood, 2013, 122, 1350-1350.	1.4	3

#	Article	IF	CITATIONS
199	Temperature sensitive synthesis of transfer RNAs in vivo in Saccharomyces cerevisiae. EMBO Journal, 1990, 9, 1253-8.	7.8	3
200	Acute Promyelocytic Leukemia with a Rare <i>PML</i> Exon 4/ <i>RARA</i> Exon 3 Fusion Transcript Variant. Acta Haematologica, 2013, 130, 176-180.	1.4	2
201	ldentification of a Cryptic Insertion ins(11;X)(q23;q28q12) Resulting in a <i>KMT2A</i> - <i>FLNA</i> Fusion in a 13-Month-Old Child with Acute Myelomonocytic Leukemia. Cytogenetic and Genome Research, 2016, 150, 281-286.	1.1	2
202	A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genetics, 2018, 228-229, 110-114.	0.4	2
203	KMT2A-ARHGEF12, a therapy related fusion with poor prognosis. Molecular Biology Reports, 2021, 48, 7021-7027.	2.3	2
204	MLL-USP2: An Underestimated New Entity of MLL-Rearranged Leukemia Identified By NGS Analysis. Blood, 2018, 132, 3920-3920.	1.4	2
205	Prognosis of Adult Patients â‰ ® 0 Years with AML and Aberrations of Chromosome 11q23: Pooled Data Analysis of the German AML-Intergroup Blood, 2006, 108, 16-16.	1.4	2
206	The Genomic Landscape Of Lineage Switch Acute Leukemia. Blood, 2013, 122, 2552-2552.	1.4	2
207	Inv(11)(q21q23) Fuses MLL to the NOTCH Co-Activator Mastermind-Like 2 in Secondary T Cell Acute Lymphoblastic Leukemia Blood, 2006, 108, 4284-4284.	1.4	2
208	MRD Monitoring Reveals a Specific Biology of BCR/ABL-Positive ALL. Blood, 2008, 112, 2529-2529.	1.4	2
209	Backtracking Of The Genetic Events Preceding Acute Leukemia Diagnosis. Blood, 2013, 122, 2562-2562.	1.4	2
210	MLL-AF4 and a murinized pSer-variant thereof are turning on the nucleolar stress pathway. Cell and Bioscience, 2022, 12, 47.	4.8	2
211	Detection and Quantification of SARS-CoV-2 by Real-Time RT-PCR Assay. Methods in Molecular Biology, 2022, 2452, 75-98.	0.9	2
212	Long-term remission of therapy-related acute myeloid leukemia with a new t(11;18)(q23;q21.2) translocation and KMT2A-ME2 (MLL-ME2) fusion gene. Cancer Genetics, 2015, 208, 610-614.	0.4	1
213	A Case of Acute Myeloid Leukemia with Novel Translocation t(6;11)(p22.2;q23) and Concurrent Insertion ins(11;9)(q23;p21.3p21.3). Advances in Experimental Medicine and Biology, 2017, 1021, 93-98.	1.6	1
214	The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(6;11). Oncogene, 2021, 40, 5902-5912.	5.9	1
215	Fatal connections: When DNA ends meet on the nuclear matrix. Journal of Cellular Biochemistry, 2000, 79, 3-22.	2.6	1
216	Clinical Implications of Minimal Residual Disease Detection in Infants with <i>KMT2A</i> -Rearranged Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. Blood, 2020, 136, 41-42.	1.4	1

#	Article	IF	CITATIONS
217	Comparison of MRD Levels and Gene Expression Patterns in MLL-R Versus Non-MLL Infant ALL. Blood, 2016, 128, 1740-1740.	1.4	1
218	<i>KMT2A-CBL</i> rearrangements in acute leukemias: clinical characteristics and genetic breakpoints. Blood Advances, 2021, 5, 5617-5620.	5.2	1
219	Prognostic Factors in Adult Patients up to 60 Years with AML and Translocations of Chromosome 11q23: Individual Patient Data Based Analysis of the German AML-Intergroup Blood, 2007, 110, 759-759.	1.4	1
220	MRD Monitoring in AML Patients with MLL-MLLT4 by Quantification of Fusion Gene Transcripts and Genomic Chromosomal Breakpoint Sequences. Blood, 2008, 112, 4888-4888.	1.4	1
221	New Insights to the MLL Recombinome Including 8 Novel Partner Genes ACTN4, C2CD3, DCP1A, FLNA, LAMC3, LOC100128568, NRIP3, and TNRC18 Blood, 2008, 112, 2047-2047.	1.4	1
222	AF4-MLL Expression Is Necessary and Sufficient for Leukemia Onset in Mice. Blood, 2008, 112, 685-685.	1.4	1
223	Closantel is an allosteric inhibitor of human Taspase1. IScience, 2021, 24, 103524.	4.1	1
224	KMT2A-MLLT1 and the Novel SEC16A-KMT2A in a Cryptic 3-Way Translocation t(9;11;19) Present in an Infant With Acute Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2022, 44, e719-e722.	0.6	1
225	Letter to the Editor: Detection of <i>EML4-ALK</i> and Other <i>ALK</i> Fusion Genes in Lung Cancer: A Lesson from the Leukemia Fusion Gene Analysis and Future Application. Journal of Korean Medical Science, 2012, 27, 576.	2.5	0
226	Editorial: Pharmazie in unserer Zeit 3/2012. Pharmazie in Unserer Zeit, 2012, 41, 179-179.	0.0	0
227	RE: Acute myeloid leukemia associated with FGFR1 abnormalities. International Journal of Hematology, 2013, 98, 139-140.	1.6	0
228	MLL., 2013,, 452-455.		0
229	MLL â ⁻ †. , 2017, , .		О
230	A New Complex Karyotype Involving a <i>KMT2A</i> -r Variant Three-Way Translocation in a Rare Clinical Presentation of a Pediatric Patient with Acute Myeloid Leukemia. Cytogenetic and Genome Research, 2019, 157, 213-219.	1.1	0
231	Analyzing the MLL Recombinome Blood, 2004, 104, 4267-4267.	1.4	Ο
232	In-Utero Origin of Childhood Acute Leukaemias Blood, 2005, 106, 1445-1445.	1.4	0
233	A LDI-PCR Based Method Allows the Identification of Any MLL Rearrangement Blood, 2005, 106, 2848-2848.	1.4	0
234	C/EBP Suppression by Interruption of CUGBP1 Resulting from a Complex Rearrangement of MLL Blood, 2006, 108, 2080-2080.	1.4	0

#	Article	IF	CITATIONS
235	Novel Spliced MLL Fusions Have Been Identified Involving the MLL Partner Genes ELL, EPS15, MLLT3, and SEPT5 Blood, 2007, 110, 978-978.	1.4	Ο
236	The MLL Recombinome of Adult ALL - Results from the GMALL Study Group Blood, 2007, 110, 977-977.	1.4	0
237	A Novel Approach for Analyzing Gene Expression Profiles Defines Two Distinct Subgroups of t(4;11) Positive Infant Acute Lymphoblastic Leukemia Patients Blood, 2007, 110, 4282-4282.	1.4	0
238	Incidence and Spectrum of MLL Gene Rearrangements in Pediatric Acute Leukemias in Poland. Blood, 2008, 112, 4851-4851.	1.4	0
239	WT1 Gene Expression Limited Application for MRD Monitoring in AML Patients Carrying MLL Rearrangements Blood, 2009, 114, 4700-4700.	1.4	0
240	The Central Region of TEL (ETV6) Is Dispensable for the TEL/AML1 (ETV6/RUNX1) Leukemogenesis Blood, 2009, 114, 1601-1601.	1.4	0
241	Acute Leukaemias with TEL/ABL Fusion: a Subgroup with Poor Prognosis and Prenatal Origin Blood, 2009, 114, 2596-2596.	1.4	Ο
242	Hypomethylation of Tumor Suppressor Genes in Acute Myeloid Leukemia: Characteristic of Cell Lines with MLL Abnormalities? Blood, 2009, 114, 365-365.	1.4	0
243	High IGSF4 expression In Pediatric Acute Monoblastic Leukemia with t(9;11). Blood, 2010, 116, 3614-3614.	1.4	Ο
244	What Is New? An Update of the MLL Recombinome Including the Three Novel Partner Genes ABI2, PDS5A, and TOP3A. Blood, 2011, 118, 1351-1351.	1.4	0
245	Molecular Genetic Characterization of 3'-Deletion of MLL Gene in Infant Acute Leukemia Blood, 2012, 120, 2498-2498.	1.4	Ο
246	MLL Gene Rearrangements in 174 Infants with Acute Leukemia Blood, 2012, 120, 2537-2537.	1.4	0
247	Identification of Multiple, Patient-Specific MLL Fusion Transcript Isoforms in Childhood Leukemia Using Anchored Multiplex PCR-Based Enrichment (AMP-E). Blood, 2016, 128, 2908-2908.	1.4	Ο
248	Genetic characteristics determine lentiviral transduction rates in patient-derived ALL cells. , 2017, 229,		0
249	Quantitative Analysis of MLL Fusion Transcripts By Droplet Digital PCR to Monitor Minimal Residual Disease in MLL-Rearranged Acute Myeloid Leukemia. Blood, 2018, 132, 2746-2746.	1.4	Ο
250	Biology of t(6;11) Fusion Proteins and Their Role in MLL-Rearranged Acute Leukemia Lineage Determination. Blood, 2019, 134, 5033-5033.	1.4	0
251	Implication of ICOSLG on Relapse in Infant T(4;11) Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3481-3481.	1.4	0
252	Targeted Next Generation Sequencing Reveals a Third Breakpoint Cluster Region and New Partner Genes in the <i>KMT2A</i> Recombinome. Blood, 2021, 138, 3327-3327.	1.4	0

#	Article	IF	CITATIONS
253	Investigating the Roles of the Yeats Domain in MLL-ENL Mediated Leukemogenesis. Blood, 2020, 136, 30-31.	1.4	0
254	Characterization of transcripts from the Dictyostelium discoideum retrotransposable genetic element DRE. Die Pharmazie, 1994, 49, 923-5.	0.5	0
255	MLL-r fusion transcripts in healthy individuals by induced gene proximity. Klinische Padiatrie, 2022, , .	0.6	0
256	The immune checkpoint ICOSLG is a relapse-predicting biomarker and therapeutic target in infant t(4;11) ALL. Klinische Padiatrie, 2022, , .	0.6	0
257	Designing specific chromosomal translocations of the MLL/KMT2A gene. Klinische Padiatrie, 2022, , .	0.6	0
258	Unravelling the recombinome of IKZF1 deletions in B-ALL. Klinische Padiatrie, 2022, , .	0.6	0