Akhtar Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512843/publications.pdf

Version: 2024-02-01

236833 175177 2,779 70 25 52 citations h-index g-index papers 70 70 70 2631 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 2017, 71, 12-28.	8.2	405
2	Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy, 2019, 240, 56-72.	5.1	318
3	A Multiagent-Based Hierarchical Energy Management Strategy for Multi-Microgrids Considering Adjustable Power and Demand Response. IEEE Transactions on Smart Grid, 2018, 9, 1323-1333.	6.2	282
4	A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 2018, 9, 2127-2139.	6.2	176
5	Double Deep \$Q\$ -Learning-Based Distributed Operation of Battery Energy Storage System Considering Uncertainties. IEEE Transactions on Smart Grid, 2020, 11, 457-469.	6.2	155
6	Resilience-Oriented Optimal Operation of Networked Hybrid Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 204-215.	6.2	103
7	Optimal Sizing of Battery Energy Storage System in a Fast EV Charging Station Considering Power Outages. IEEE Transactions on Transportation Electrification, 2020, 6, 453-463.	5.3	103
8	Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties. Energies, 2016, 9, 278.	1.6	81
9	Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability. IET Renewable Power Generation, 2017, 11, 846-857.	1.7	74
10	Robust Optimal Operation of AC/DC Hybrid Microgrids Under Market Price Uncertainties. IEEE Access, 2018, 6, 2654-2667.	2.6	69
11	A Proactive and Survivability-Constrained Operation Strategy for Enhancing Resilience of Microgrids Using Energy Storage System. IEEE Access, 2018, 6, 75495-75507.	2.6	56
12	An internal trading strategy for optimal energy management of combined cooling, heat and power in building microgrids. Applied Energy, 2019, 239, 536-548.	5.1	55
13	Impact of Uncertainties on Resilient Operation of Microgrids: A Data-Driven Approach. IEEE Access, 2019, 7, 14924-14937.	2.6	50
14	An expert system for acoustic diagnosis of power circuit breakers and on-load tap changers. Expert Systems With Applications, 2015, 42, 9426-9433.	4.4	46
15	Resilience Enhancement Strategies For and Through Electric Vehicles. Sustainable Cities and Society, 2022, 80, 103788.	5.1	45
16	Optimal siting and sizing of tri-generation equipment for developing an autonomous community microgrid considering uncertainties. Sustainable Cities and Society, 2017, 32, 318-330.	5.1	44
17	Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs) for Enhancing the Resiliency of Hybrid Microgrids. Energies, 2017, 10, 271.	1.6	33
18	Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System. Energies, 2018, 11, 1452.	1.6	33

#	Article	IF	Citations
19	An Energy Management System With Optimum Reserve Power Procurement Function for Microgrid Resilience Improvement. IEEE Access, 2019, 7, 42577-42585.	2.6	33
20	Harmonic Analysis of Grid-Connected Solar PV Systems with Nonlinear Household Loads in Low-Voltage Distribution Networks. Sustainability, 2021, 13, 3709.	1.6	31
21	Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations. Energies, 2017, 10, 789.	1.6	30
22	An Effort-Based Reward Approach for Allocating Load Shedding Amount in Networked Microgrids Using Multiagent System. IEEE Transactions on Industrial Informatics, 2020, 16, 2268-2279.	7.2	30
23	Optimal Operation of Greenhouses in Microgrids Perspective. IEEE Transactions on Smart Grid, 2019, 10, 3474-3485.	6.2	29
24	Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System. Energies, 2019, 12, 1789.	1.6	27
25	Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System. Energies, 2017, 10, 1484.	1.6	26
26	EV Prioritization and Power Allocation During Outages: A Lexicographic Method-Based Multiobjective Optimization Approach. IEEE Transactions on Transportation Electrification, 2021, 7, 2474-2487.	5.3	24
27	Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles. Energies, 2021, 14, 142.	1.6	23
28	A Strategy for Flexible Frequency Operation of Stand-Alone Multimicrogrids. IEEE Transactions on Sustainable Energy, 2018, 9, 1636-1647.	5.9	22
29	Limitations in Energy Management Systems: A Case Study for Resilient Interconnected Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 5675-5685.	6.2	22
30	Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System. Energies, 2017, 10, 903.	1.6	21
31	Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter. Energies, 2019, 12, 4516.	1.6	21
32	A Dynamic Internal Trading Price Strategy for Networked Microgrids: A Deep Reinforcement Learning-Based Game-Theoretic Approach. IEEE Transactions on Smart Grid, 2022, 13, 3408-3421.	6.2	21
33	Impact Analysis of Survivability-Oriented Demand Response on Islanded Operation of Networked Microgrids with High Penetration of Renewables. Energies, 2019, 12, 452.	1.6	19
34	A Hybrid Framework for Adaptive Protection of Microgrids Based on IEC 61850. International Journal of Smart Home, 2016, 10, 285-296.	0.6	19
35	Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids. Energies, 2017, 10, 882.	1.6	17
36	Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles. Energies, 2018, 11, 2646.	1.6	17

#	Article	IF	Citations
37	N-version programming-based protection scheme for microgrids: A multi-agent system based approach. Sustainable Energy, Grids and Networks, 2016, 6, 35-45.	2.3	16
38	Heuristic optimisationâ€based sizing and siting of DGs for enhancing resiliency of autonomous microgrid networks. IET Smart Grid, 2019, 2, 269-282.	1.5	15
39	Consensus Algorithm-Based Distributed Operation of Microgrids During Grid-Connected and Islanded Modes. IEEE Access, 2020, 8, 78151-78165.	2.6	14
40	Analytical Hybrid Particle Swarm Optimization Algorithm for Optimal Siting and Sizing of Distributed Generation in Smart Grid. Journal of Modern Power Systems and Clean Energy, 2020, 8, 1221-1230.	3.3	12
41	Welfare Maximization-Based Distributed Demand Response for Islanded Multi-Microgrid Networks Using Diffusion Strategy. Energies, 2019, 12, 3701.	1.6	11
42	Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids. Sustainability, 2020, 12, 8119.	1.6	11
43	Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation. Energies, 2020, 13, 230.	1.6	11
44	Fairness and Utilitarianism in Allocating Energy to EVs During Power Contingencies Using Modified Division Rules. IEEE Transactions on Sustainable Energy, 2022, 13, 1444-1456.	5.9	10
45	Optimal Operation of Wind Farm for Reducing Power Deviation Considering Grid-Code Constraints and Events. IEEE Access, 2019, 7, 139058-139068.	2.6	9
46	Optimal Operation of Tri-Generation Microgrids Considering Demand Uncertainties. International Journal of Smart Home, 2016, 10, 131-144.	0.6	9
47	A Novel Algorithm for Reducing Restoration Time in Smart Distribution Systems Utilizing Reclosing Dead Time. Journal of Electrical Engineering and Technology, 2014, 9, 1805-1811.	1.2	9
48	A standards-based approach for Auto-drawing single line diagram of multivendor smart distribution systems. International Journal of Electrical Power and Energy Systems, 2018, 96, 357-367.	3.3	8
49	A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse. Energies, 2018, 11, 1876.	1.6	8
50	Evaluation of Multi-Objective Optimization Techniques for Resilience Enhancement of Electric Vehicles. Electronics (Switzerland), 2021, 10, 3030.	1.8	8
51	Optimal Energy Management of Building Microgrid Networks in Islanded Mode Considering Adjustable Power and Component Outages. Energies, 2018, 11, 2351.	1.6	7
52	An Optimal Energy Management Strategy for Thermally Networked Microgrids in Grid-Connected Mode. International Journal of Smart Home, 2016, 10, 239-258.	0.6	7
53	Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system. Electric Power Systems Research, 2022, 210, 108087.	2.1	7
54	Optimal operation of static energy storage in fast-charging stations considering the trade-off between resilience and peak shaving. Journal of Energy Storage, 2022, 53, 105197.	3.9	7

#	Article	IF	Citations
55	Demand Bidding and Real-Time Pricing-Based Optimal Operation of Multi-Microgrids. International Journal of Smart Home, 2016, 10, 193-208.	0.6	6
56	An Algorithm to Enhance the Profit Margin of Electric Vehicle Owners and Resilience of Multi-microgrid Using EV. Journal of Electrical Engineering and Technology, 2022, 17, 2161-2169.	1.2	5
57	Multi-Objective Optimization for Determining Trade-Off between Output Power and Power Fluctuations in Wind Farm System. Energies, 2019, 12, 4242.	1.6	4
58	Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System. Sustainability, 2021, 13, 624.	1.6	4
59	Line Security Evaluation of WANS Considering Protectability of Relays and Vulnerability of Lines. Journal of Electrical Engineering and Technology, 2014, 9, 1864-1872.	1.2	4
60	Reliability-as-a-Service Usage of Electric Vehicles: Suitability Analysis for Different Types of Buildings. Energies, 2022, 15, 665.	1.6	4
61	Impact Quantification of Demand Response Uncertainty on Unit Commitment of Microgrids., 2016,,.		3
62	Optimal Sizing of Energy Storage System for Operation of Wind Farms Considering Grid-Code Constraints. Energies, 2021, 14, 5478.	1.6	3
63	Optimal microgrid operation considering auto-configuration in islanded mode. , 2016, , .		2
64	Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints. Energies, 2019, 12, 4672.	1.6	2
65	A Survey on Particle Swarm Optimization for Use in Distributed Generation Placement and Sizing. MATEC Web of Conferences, 2016, 70, 10013.	0.1	1
66	A Strategy for Optimal Operation of Hybrid AC/DC Microgrid under Different Connection Failure Scenarios. International Journal of Smart Home, 2016, 10, 231-244.	0.6	1
67	A Game-Theoretic Approach for Charging Demand Management of Electric Vehicles During System Overload., 2021,,.		1
68	Real-time optimization for microgrid operation based on auto-configuration in grid-connected mode. , 2016, , .		0
69	Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode. Energies, 2019, 12, 1930.	1.6	0
70	A Reward Mechanism for Reliability-as-a-Service Usage of Electric Vehicles. , 2022, , .		0