
Joao Fg Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512737/publications.pdf Version: 2024-02-01

ΙΩΛΩ Ες Οιινειρλ

#	Article	IF	CITATIONS
1	Life Cycle Assessment in automotive sector: A case study for engine valves towards cleaner production. Journal of Cleaner Production, 2018, 184, 286-300.	9.3	28
2	Development of a patterning system for vitrified CBN wheels based on modal analysis. CIRP Annals - Manufacturing Technology, 2018, 67, 341-344.	3.6	8
3	Manufacturing of structured surfaces via grinding. Journal of Materials Processing Technology, 2017, 243, 170-183.	6.3	26
4	Grinding process for profiled texturing. CIRP Annals - Manufacturing Technology, 2016, 65, 337-340.	3.6	16
5	Dry grinding process with workpiece precooling. CIRP Annals - Manufacturing Technology, 2015, 64, 329-332.	3.6	10
6	Thermal analysis of chip formation using FEM and a hybrid explicit-implicit approach. International Journal of Advanced Manufacturing Technology, 2015, 77, 235-240.	3.0	1
7	Strategies for production of parts textured by grinding using patterned wheels. CIRP Annals - Manufacturing Technology, 2013, 62, 355-358.	3.6	41
8	Towards a balanced scoreboard for assessing manufacturing processes sustainability. International Journal of Business Performance Management, 2012, 13, 198.	0.3	7
9	Advances in centerless grinding technology. CIRP Annals - Manufacturing Technology, 2012, 61, 747-770.	3.6	61
10	Remote monitoring for high-speed CNC processes over public IP networks using CyberOPC. International Journal of Advanced Manufacturing Technology, 2012, 60, 191-200.	3.0	15
11	Evaluation Technique for Determining Wheel Performance in the Grinding of Aerospace Materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225, 25-34.	2.4	5
12	A novel dressing technique for texturing of ground surfaces. CIRP Annals - Manufacturing Technology, 2010, 59, 361-364.	3.6	85
13	Industrial challenges in grinding. CIRP Annals - Manufacturing Technology, 2009, 58, 663-680.	3.6	190
14	Remote control of CNC machines using the CyberOPC communication system over public networks. International Journal of Advanced Manufacturing Technology, 2008, 39, 570-577.	3.0	23
15	Experimental analysis of wheel/workpiece dynamic interactions in grinding. CIRP Annals - Manufacturing Technology, 2008, 57, 329-332.	3.6	25
16	Architecture for machining process and production monitoring based in open computer numerical control. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222, 1605-1612.	2.4	11
17	Design of a communication system for integration of industrial networks over public IP networks. Industrial Informatics, 2009 INDIN 2009 7th IEEE International Conference on, 2007, , .	0.0	4
18	Development of new cutting fluid for grinding process adjusting mechanical performance and environmental impact. Journal of Materials Processing Technology, 2006, 179, 185-189.	6.3	70

JOAO FG OLIVEIRA

#	Article	IF	CITATIONS
19	Development of Environmentally Friendly Fluid for CBN Grinding. CIRP Annals - Manufacturing Technology, 2006, 55, 343-346.	3.6	25
20	Precision manufacturing process monitoring with acoustic emission. International Journal of Machine Tools and Manufacture, 2006, 46, 176-188.	13.4	185
21	Analysis of Grinding Strategies Applied to Crankshaft Manufacturing. CIRP Annals - Manufacturing Technology, 2005, 54, 269-272.	3.6	17
22	Detection of cracks in scratching tests in ceramic materials through acoustic emission. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219, 685-693.	2.4	11
23	Fast Grinding Process Control with AE Modulated Power Signals. CIRP Annals - Manufacturing Technology, 2004, 53, 267-270.	3.6	21
24	Analysis of Tool and Workpiece Interaction in Diamond Turning Using Graphical Analysis of Acoustic Emission. CIRP Annals - Manufacturing Technology, 2003, 52, 479-482.	3.6	24
25	Application of AE Contact Sensing in Reliable Grinding Monitoring. CIRP Annals - Manufacturing Technology, 2001, 50, 217-220.	3.6	66
26	Experimental evaluation on grinding wheel wear through vibration and acoustic emission. Wear, 1998, 217, 7-14.	3.1	62
27	Dimensional Characterization of Grinding Wheel Surface through Acoustic Emission. CIRP Annals - Manufacturing Technology, 1994, 43, 291-294.	3.6	51
28	Investigation on Surface Finishing of Components Ground with Lapping Kinematics: Lapgrinding Process. Advanced Materials Research, 0, 223, 879-887.	0.3	1