List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512390/publications.pdf Version: 2024-02-01

ВОНИЛ НИЛИС

#	Article	IF	CITATIONS
1	Warm Events in the Tropical Atlantic. Journal of Physical Oceanography, 1994, 24, 888-903.	1.7	200
2	Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization. Climate Dynamics, 2012, 39, 399-418.	3.8	190
3	Interannual variability in the tropical Indian Ocean. Journal of Geophysical Research, 2002, 107, 20-1.	3.3	177
4	Tropical Cyclone Climatology in a 10-km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling. Journal of Climate, 2012, 25, 3867-3893.	3.2	157
5	Multiseasonal Predictions with a Coupled Tropical Ocean–Global Atmosphere System. Monthly Weather Review, 1997, 125, 789-808.	1.4	124
6	Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains. Journal of Climate, 2009, 22, 6047-6065.	3.2	119
7	Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate. Journal of Hydrometeorology, 2012, 13, 981-995.	1.9	104
8	Intrinsic Ocean–Atmosphere Variability of the Tropical Atlantic Ocean. Journal of Climate, 2004, 17, 2058-2077.	3.2	96
9	Salinity anomaly as a trigger for ENSO events. Scientific Reports, 2014, 4, 6821.	3.3	92
10	Ocean–Atmosphere Interactions in the Tropical and Subtropical Atlantic Ocean. Journal of Climate, 2005, 18, 1652-1672.	3.2	91
11	An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Climate Dynamics, 2012, 38, 2017-2035.	3.8	90
12	Persistence and Predictions of the Remarkable Warm Anomaly in the Northeastern Pacific Ocean during 2014–16. Journal of Climate, 2017, 30, 689-702.	3.2	85
13	The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophysical Research Letters, 2002, 29, 35-1.	4.0	83
14	The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 2123-2136.	1.4	80
15	Evolution of model systematic errors in the Tropical Atlantic Basin from coupled climate hindcasts. Climate Dynamics, 2007, 28, 661-682.	3.8	80
16	Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophysical Research Letters, 2012, 39, .	4.0	73
17	The influences of East Asian Monsoon on summer precipitation in Northeast China. Climate Dynamics, 2017, 48, 1647-1659.	3.8	73
18	The Interdecadal Shift of ENSO Properties in 1999/2000: A Review. Journal of Climate, 2020, 33, 4441-4462.	3.2	71

#	Article	IF	CITATIONS
19	The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Scientific Reports, 2016, 6, 19677.	3.3	68
20	Verification of Land–Atmosphere Coupling in Forecast Models, Reanalyses, and Land Surface Models Using Flux Site Observations. Journal of Hydrometeorology, 2018, 19, 375-392.	1.9	66
21	Ocean Data Assimilation, Initialization, and Predictions of ENSO with a Coupled GCM. Monthly Weather Review, 1999, 127, 1187-1207.	1.4	60
22	Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Climate Dynamics, 2012, 38, 1-23.	3.8	60
23	Ocean Wave Dynamics and El Niño. Journal of Climate, 1995, 8, 2415-2439.	3.2	59
24	Role of the Indian Ocean in the ENSO–Indian Summer Monsoon Teleconnection in the NCEP Climate Forecast System. Journal of Climate, 2012, 25, 2490-2508.	3.2	59
25	Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS. Climate Dynamics, 2009, 32, 989-1001.	3.8	54
26	Mechanisms for the Interannual Variability in the Tropical Indian Ocean. Part II: Regional Processes. Journal of Climate, 2007, 20, 2937-2960.	3.2	51
27	Seasonality in Prediction Skill and Predictable Pattern of Tropical Indian Ocean SST. Journal of Climate, 2015, 28, 7962-7984.	3.2	51
28	Mechanisms for the Interannual Variability in the Tropical Indian Ocean. Part I: The Role of Remote Forcing from the Tropical Pacific. Journal of Climate, 2007, 20, 2917-2936.	3.2	50
29	Future Changes in the Western North Pacific Tropical Cyclone Activity Projected by a Multidecadal Simulation with a 16-km Global Atmospheric GCM. Journal of Climate, 2014, 27, 7622-7646.	3.2	49
30	Physical Processes Associated with the Tropical Atlantic SST Gradient during the Anomalous Evolution in the Southeastern Ocean. Journal of Climate, 2007, 20, 3366-3378.	3.2	47
31	An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Climate Dynamics, 2012, 39, 1001-1020.	3.8	46
32	The Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO. Monthly Weather Review, 2007, 135, 1786-1806.	1.4	45
33	On the variety of coastal El Ni $ ilde{A}$ ±o events. Climate Dynamics, 2019, 52, 7537-7552.	3.8	44
34	The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophysical Research Letters, 2015, 42, 4507-4515.	4.0	43
35	The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM. Climate Dynamics, 2009, 32, 1015-1034.	3.8	42
36	Variations of the East Asian Mei-Yu and Simulation and Prediction by the NCEP Climate Forecast System. Journal of Climate, 2011, 24, 94-108.	3.2	41

#	Article	IF	CITATIONS
37	Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dynamics, 2013, 40, 2745-2759.	3.8	41
38	Characteristics of the Interannual and Decadal Variability in a General Circulation Model of the Tropical Atlantic Ocean. Journal of Physical Oceanography, 1997, 27, 1693-1712.	1.7	40
39	Predictable patterns and predictive skills of monsoon precipitation in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Climate Dynamics, 2013, 40, 3071-3088.	3.8	40
40	Interdecadal variations of ENSO around 1999/2000. Journal of Meteorological Research, 2017, 31, 73-81.	2.4	37
41	Annual Cycle and ENSO in a Coupled Ocean–Atmosphere General Circulation Model. Monthly Weather Review, 1997, 125, 680-702.	1.4	36
42	The Response of an Ocean General Circulation Model to Surface Wind Stress Produced by an Atmospheric General Circulation Model. Monthly Weather Review, 1995, 123, 3059-3085.	1.4	35
43	Persistent Atmospheric and Oceanic Anomalies in the North Atlantic from Summer 2009 to Summer 2010. Journal of Climate, 2011, 24, 5812-5830.	3.2	35
44	On the Challenge for ENSO Cycle Prediction: An Example from NCEP Climate Forecast System, Version 2. Journal of Climate, 2019, 32, 183-194.	3.2	35
45	Physical Processes Associated with the Tropical Atlantic SST Meridional Gradient. Journal of Climate, 2006, 19, 5500-5518.	3.2	34
46	Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions. Climate Dynamics, 2015, 44, 559-583.	3.8	34
47	Reforecasting the ENSO Events in the Past 57 Years (1958–2014). Journal of Climate, 2017, 30, 7669-7693.	3.2	34
48	Ocean data assimilation using intermittent analyses and continuous model error correction. Advances in Atmospheric Sciences, 2002, 19, 965-992.	4.3	33
49	A Numerical Simulation of the Variability in the Tropical Atlantic Ocean, 1980–88. Journal of Physical Oceanography, 1995, 25, 835-854.	1.7	31
50	Prediction Skill of North Pacific Variability in NCEP Climate Forecast System Version 2: Impact of ENSO and Beyond. Journal of Climate, 2014, 27, 4263-4272.	3.2	31
51	Cloud-SST feedback in southeastern tropical Atlantic anomalous events. Journal of Geophysical Research, 2007, 112, .	3.3	30
52	ENSO Prediction in Project Minerva: Sensitivity to Atmospheric Horizontal Resolution and Ensemble Size. Journal of Climate, 2015, 28, 2080-2095.	3.2	30
53	Asymmetric evolution of El Niño and La Niña: the recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Climate Dynamics, 2017, 49, 2737-2748.	3.8	30
54	Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lowerâ€tropospheric stability and airâ€sea interaction. Journal of Geophysical Research, 2008, 113, .	3.3	29

#	Article	IF	CITATIONS
55	Interannual variability of the Indian summer monsoon associated with the air–sea feedback in the northern Indian Ocean. Climate Dynamics, 2016, 46, 1977-1990.	3.8	28
56	Importance of convective parameterization in ENSO predictions. Geophysical Research Letters, 2017, 44, 6334-6342.	4.0	27
57	On the Shortening of the Lead Time of Ocean Warm Water Volume to ENSO SST Since 2000. Scientific Reports, 2017, 7, 4294.	3.3	27
58	Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dynamics, 2013, 41, 2785-2795.	3.8	26
59	Air–sea coupling in the North Atlantic during summer. Climate Dynamics, 2006, 26, 441-457.	3.8	24
60	Predicting US summer precipitation using NCEP Climate Forecast System version 2 initialized by multiple ocean analyses. Climate Dynamics, 2013, 41, 1941-1954.	3.8	24
61	Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations. Climate Dynamics, 2012, 38, 25-43.	3.8	22
62	Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO. Climate Dynamics, 2016, 46, 1753-1768.	3.8	22
63	An Analysis of Forced and Internal Variability in a Warmer Climate in CCSM3. Journal of Climate, 2012, 25, 2356-2373.	3.2	21
64	South Pacific Ocean Dipole: A Predictable Mode on Multiseasonal Time Scales. Journal of Climate, 2014, 27, 1648-1658.	3.2	21
65	Roles of Remote and Local Forcings in the Variation and Prediction of Regional Maritime Continent Rainfall in Wet and Dry Seasons. Journal of Climate, 2016, 29, 8871-8879.	3.2	21
66	Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system. Climate Dynamics, 2011, 36, 1795-1811.	3.8	20
67	The Role of Ocean Dynamics in the Interaction between the Atlantic Meridional and Equatorial Modes. Journal of Climate, 2012, 25, 3583-3598.	3.2	19
68	Sea Surface Temperature Predictions in NCEP CFSv2 Using a Simple Ocean Initialization Scheme. Monthly Weather Review, 2015, 143, 3176-3191.	1.4	19
69	Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2. Climate Dynamics, 2016, 46, 3845-3864.	3.8	19
70	Predictability and prediction of Indian summer monsoon by CFSv2: implication of the initial shock effect. Climate Dynamics, 2018, 50, 159-178.	3.8	19
71	On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. Journal of Geophysical Research, 2006, 111, .	3.3	18
72	An Analysis of the Linkage of Pacific Subtropical Cells with the Recharge–Discharge Processes in ENSO Evolution. Journal of Climate, 2015, 28, 3786-3805.	3.2	18

#	Article	IF	CITATIONS
73	The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event. Journal of Climate, 2016, 29, 5859-5877.	3.2	18
74	Predictive Skill and Predictable Patterns of the U.S. Seasonal Precipitation in CFSv2 Reforecasts of 60 Years (1958–2017). Journal of Climate, 2019, 32, 8603-8637.	3.2	18
75	Role of Atlantic air–sea interaction in modulating the effect of Tibetan Plateau heating on the upstream climate over Afro-Eurasia–Atlantic regions. Climate Dynamics, 2019, 53, 509-519.	3.8	18
76	Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Climate Dynamics, 2012, 39, 531-555.	3.8	17
77	Contributions of Atmosphere–Ocean Interaction and Low-Frequency Variation to Intensity of Strong El Niño Events since 1979. Journal of Climate, 2019, 32, 1381-1394.	3.2	17
78	Seasonal Forecasting Skill of Sea‣evel Anomalies in a Multiâ€Model Prediction Framework. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017060.	2.6	17
79	Regional Structure of the Indian Summer Monsoon in Observations, Reanalysis, and Simulation. Journal of Climate, 2015, 28, 1824-1841.	3.2	16
80	Improved seasonal predictive skill and enhanced predictability of the Asian summer monsoon rainfall following ENSO events in NCEP CFSv2 hindcasts. Climate Dynamics, 2019, 52, 3079-3098.	3.8	16
81	Slow and fast annual cycles of the Asian summer monsoon in the NCEP CFSv2. Climate Dynamics, 2016, 47, 529-553.	3.8	14
82	Seasonal predictability of the tropical Atlantic variability: northern tropical Atlantic pattern. Climate Dynamics, 2019, 52, 6909-6929.	3.8	14
83	A spurious warming trend in the NMME equatorial Pacific SST hindcasts. Climate Dynamics, 2019, 53, 7287-7303.	3.8	14
84	A New Look at the Physics of Rossby Waves: A Mechanical–Coriolis Oscillation. Journals of the Atmospheric Sciences, 2013, 70, 303-316.	1.7	13
85	Improving prediction of two ENSO types using a multi-model ensemble based on stepwise pattern projection model. Climate Dynamics, 2020, 54, 3229-3243.	3.8	13
86	On the Interdecadal Variation of the Warm Water Volume in the Tropical Pacific Around 1999/2000. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033306.	3.3	12
87	Leading patterns of the tropical Atlantic variability in a coupled general circulation model. Climate Dynamics, 2008, 30, 703-726.	3.8	11
88	Sensitivity of the tropical Pacific seasonal cycle and ENSO to changes in mean state induced by a surface heat flux adjustment in CCSM3. Climate Dynamics, 2011, 37, 325-341.	3.8	11
89	Leading Modes of the Upper-Ocean Temperature Interannual Variability along the Equatorial Atlantic Ocean in NCEP GODAS. Journal of Climate, 2013, 26, 4649-4663.	3.2	11
90	Interannual variability of the South Pacific Ocean in observations and simulated by the NCEP Climate Forecast System, version 2. Climate Dynamics, 2014, 43, 1141-1157.	3.8	11

#	Article	IF	CITATIONS
91	Dynamical and Thermodynamical Influences of the Maritime Continent on ENSO Evolution. Scientific Reports, 2018, 8, 15352.	3.3	10
92	Monthly Climatologies of Oceanic Friction Velocity Cubed. Journal of Climate, 2006, 19, 5700-5708.	3.2	9
93	Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain. Climate Dynamics, 2018, 50, 4263-4284.	3.8	9
94	An Examination of the AGCM Simulated Surface Wind Stress and Low-Level Winds over the Tropical Pacific Ocean. Monthly Weather Review, 1997, 125, 985-998.	1.4	9
95	A Comparison of Two Surface Wind Stress Analyses over the Tropical Atlantic during 1980–1987. Journal of Climate, 1996, 9, 906-927.	3.2	8
96	Evaluation of the CFSv2 CMIP5 decadal predictions. Climate Dynamics, 2015, 44, 543-557.	3.8	8
97	A multi-model analysis of the resolution influence on precipitation climatology in the Gulf Stream region. Climate Dynamics, 2017, 48, 1685-1704.	3.8	8
98	Predictable Patterns of the Atmospheric Low-Level Circulation over the Indo-Pacific Region in Project Minerva: Seasonal Dependence and Intraensemble Variability. Journal of Climate, 2018, 31, 8351-8379.	3.2	8
99	Does vertical temperature gradient of the atmosphere matter for El Niño development?. Climate Dynamics, 2017, 48, 1413-1429.	3.8	7
100	The Influence of Summer Deep Soil Temperature on Early Winter Snow Conditions in Eurasia in the NCEP CFSv2 Simulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9062-9077.	3.3	7
101	Sensitivity of U.S. Drought Prediction Skill to Land Initial States. Journal of Hydrometeorology, 2020, 21, 2793-2811.	1.9	7
102	A Dissection of Energetics of the Geostrophic Flow: Reconciliation of Rossby Wave Energy Flux and Group Velocity. Journals of the Atmospheric Sciences, 2013, 70, 2179-2196.	1.7	6
103	Bulk connectivity of global SST and land precipitation variations. Climate Dynamics, 2022, 58, 195-209.	3.8	6
104	The relative roles of decadal climate variations and changes in the ocean observing system on seasonal prediction skill of tropical Pacific SST. Climate Dynamics, 2021, 56, 3045-3063.	3.8	6
105	Climatological influence of Eurasian winter surface conditions on the Asian and Indoâ€Pacific summer circulation in the NCEP CFSv2 seasonal reforecasts. International Journal of Climatology, 2019, 39, 3431-3453.	3.5	5
106	Seasonal prediction skill and predictability of the Northern Hemisphere storm track variability in Project Minerva. Climate Dynamics, 2019, 52, 6427-6440.	3.8	5
107	Combined Role of High- and Low-Frequency Processes of Equatorial Zonal Transport in Terminating an ENSO Event. Journal of Climate, 2018, 31, 5461-5483.	3.2	4
108	Representation of Ocean-Atmosphere Processes Associated with Extended Monsoon Episodes over South Asia in CFSv2. Frontiers in Earth Science, 2018, 6, .	1.8	4

#	Article	IF	CITATIONS
109	Subannual to Interannual Variabilities of SST in the North Atlantic Ocean. Journal of Climate, 2020, 33, 5547-5564.	3.2	4
110	Oceanic meridional transports and their roles in warm water volume variability and ENSO in the tropical Pacific. Climate Dynamics, 2022, 59, 245-261.	3.8	4
111	An examination of the Northern Hemisphere mid-latitude storm track interannual variability simulated by climate models—sensitivity to model resolution and coupling. Climate Dynamics, 2019, 52, 4247-4268.	3.8	3
112	Seasonally-dependent impact of easterly wind bursts on the development of El Niño events. Climate Dynamics, 2019, 53, 1527-1546.	3.8	2
113	Cumulative Influence of Summer Subsurface Soil Temperature on North America Surface Temperature in the CFSv2. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031899.	3.3	2
114	Impact of Land Initial States Uncertainty on Subseasonal Surface Air Temperature Prediction in CFSv2 Reforecasts. Journal of Hydrometeorology, 2020, 21, 2101-2121.	1.9	2