Miriam Pedrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512048/publications.pdf

Version: 2024-02-01

516710 526287 32 828 16 27 citations h-index g-index papers 34 34 34 1449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell–cell fusion. Journal of General Virology, 2021, 102, .	2.9	21
2	A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nature Communications, 2021, 12, 542.	12.8	200
3	Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathogens, 2021, 17, e1009330.	4.7	13
4	Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines, 2020, $8,115.$	4.4	27
5	Generating Recombinant Avian Herpesvirus Vectors with CRISPR/Cas9 Gene Editing. Journal of Visualized Experiments, 2019, , .	0.3	9
6	A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine, 2018, 36, 716-722.	3.8	48
7	Gallid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination. Npj Vaccines, 2018, 3, 21.	6.0	11
8	Pulmonary intravascular macrophages regulate the pathogenetic mechanisms of pulmonary lesions during acute courses of classical swine fever. Transboundary and Emerging Diseases, 2018, 65, 1885-1897.	3.0	6
9	Inhibition of v-rel-Induced Oncogenesis through microRNA Targeting. Viruses, 2018, 10, 242.	3.3	3
10	CD1â^' and CD1+ porcine blood dendritic cells are enriched for the orthologues of the two major mammalian conventional subsets. Scientific Reports, 2017, 7, 40942.	3.3	37
11	Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens. Veterinary Microbiology, 2017, 209, 66-74.	1.9	14
12	The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses. Frontiers in Immunology, 2016, 7, 40.	4.8	22
13	Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8. Veterinary Microbiology, 2015, 177, 95-105.	1.9	19
14	Effects of Preinfection With Bovine Viral Diarrhea Virus on Immune Cells From the Lungs of Calves Inoculated With Bovine Herpesvirus 1.1. Veterinary Pathology, 2015, 52, 644-653.	1.7	7
15	Pathogenic mechanisms implicated in the intravascular coagulation in the lungs of BVDV-infected calves challenged with BHV-1. Veterinary Research, 2013, 44, 20.	3.0	13
16	The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus. Veterinary Journal, 2013, 198, 182-186.	1.7	38
17	Comparative study of clinical courses, gross lesions, acute phase response and coagulation disorders in sheep inoculated with bluetongue virus serotype 1 and 8. Veterinary Microbiology, 2013, 166, 184-194.	1.9	29
18	Effect of infection with BHV-1 on peripheral blood leukocytes and lymphocyte subpopulations in calves with subclinical BVD. Research in Veterinary Science, 2013, 95, 115-122.	1.9	15

#	Article	IF	CITATIONS
19	Immunohistochemical Detection of Dendritic Cell Markers in Cattle. Veterinary Pathology, 2013, 50, 1099-1108.	1.7	18
20	Comparison of pathological changes and viral antigen distribution in tissues of calves with and without preexisting bovine viral diarrhea virus infection following challenge with bovine herpesvirus-1. American Journal of Veterinary Research, 2013, 74, 598-610.	0.6	13
21	Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression. PLoS ONE, 2013, 8, e84246.	2.5	28
22	Characterization of Apoptosis Pathways (Intrinsic and Extrinsic) in Lymphoid Tissues of Calves Inoculated with Non-cytopathic Bovine Viral Diarrhoea Virus Genotype-1. Journal of Comparative Pathology, 2012, 146, 30-39.	0.4	11
23	Response of proinflammatory and anti-inflammatory cytokines in calves with subclinical bovine viral diarrhea challenged with bovine herpesvirus-1. Veterinary Immunology and Immunopathology, 2011, 144, 135-143.	1.2	30
24	Immunohistochemical Detection of Bluetongue Virus in Fixed Tissue. Journal of Comparative Pathology, 2010, 143, 20-28.	0.4	17
25	Apoptosis in lymphoid tissues of calves inoculated with non-cytopathic bovine viral diarrhea virus genotype 1: activation of effector caspase-3 and role of macrophages. Journal of General Virology, 2009, 90, 2650-2659.	2.9	26
26	Morphological Changes and Virus Distribution in the Ileum of Colostrum-Deprived Calves Inoculated with Non-Cytopathic Bovine Viral Diarrhoea Virus Genotype-1. Journal of Comparative Pathology, 2009, 141, 52-62.	0.4	21
27	Serum concentrations of C-reactive protein, serum amyloid A, and haptoglobin in pigs inoculated with African swine fever or classical swine fever viruses. American Journal of Veterinary Research, 2007, 68, 772-777.	0.6	29
28	Cytokine Expression in Paraffin Wax-embedded Tissues from Conventional Calves. Journal of Comparative Pathology, 2007, 136, 273-278.	0.4	5
29	The Role of B Cells in the Immune Response to Pestivirus (Classical Swine Fever Virus). Journal of Comparative Pathology, 2006, 135, 32-41.	0.4	3
30	Expression of Proinflammatory Cytokines by Hepatic Macrophages in Acute Classical Swine Fever. Journal of Comparative Pathology, 2005, 133, 23-32.	0.4	19
31	Lymphocyte Apoptosis and Thrombocytopenia in Spleen during Classical Swine Fever: Role of Macrophages and Cytokines. Veterinary Pathology, 2005, 42, 477-488.	1.7	54
32	Immunohistochemical Detection of the Expression of Pro-inflammatory Cytokines by Ovine Pulmonary Macrophages. Journal of Comparative Pathology, 2004, 131, 285-293.	0.4	7