List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Signal Transduction Pathways Downstream M2 Receptor Activation: Effects on Schwann Cell Migration and Morphology. Life, 2022, 12, 211.	1.1	6
2	Notch Signal Mediates the Cross-Interaction between M2 Muscarinic Acetylcholine Receptor and Neuregulin/ErbB Pathway: Effects on Schwann Cell Proliferation. Biomolecules, 2022, 12, 239.	1.8	2
3	Effects Mediated by Dimethyl Fumarate on In Vitro Oligodendrocytes: Implications in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 3615.	1.8	1
4	The activation of M2 muscarinic receptor inhibits cell growth and survival in human epithelial ovarian carcinoma. Journal of Cellular Biochemistry, 2022, 123, 1440-1453.	1.2	3
5	Schwann-like adipose-derived stem cells as a promising therapeutic tool for peripheral nerve regeneration: effects of cholinergic stimulation. Neural Regeneration Research, 2021, 16, 1218.	1.6	10
6	Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients' Lives, and Reduce Costs. Nanomaterials, 2021, 11, 743.	1.9	13
7	Expression of Cholinergic Markers and Characterization of Splice Variants during Ontogenesis of Rat Dorsal Root Ganglia Neurons. International Journal of Molecular Sciences, 2021, 22, 5499.	1.8	3
8	Cholinergic Modulation of Neuroinflammation: Focus on α7 Nicotinic Receptor. International Journal of Molecular Sciences, 2021, 22, 4912.	1.8	48
9	M2 Muscarinic Receptor Activation Impairs Mitotic Progression and Bipolar Mitotic Spindle Formation in Human Glioblastoma Cell Lines. Cells, 2021, 10, 1727.	1.8	5
10	The Combined Treatment with Chemotherapeutic Agents and the Dualsteric Muscarinic Agonist Iper-8-Naphthalimide Affects Drug Resistance in Glioblastoma Stem Cells. Cells, 2021, 10, 1877.	1.8	8
11	Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. Nanomaterials, 2021, 11, 2.	1.9	39
12	Transient Anomalous Diffusion MRI in Excised Mouse Spinal Cord: Comparison Among Different Diffusion Metrics and Validation With Histology. Frontiers in Neuroscience, 2021, 15, 797642.	1.4	3
13	The Mechanisms Mediated by α7 Acetylcholine Nicotinic Receptors May Contribute to Peripheral Nerve Regeneration. Molecules, 2021, 26, 7668.	1.7	7
14	The dialogue between died and viable cells: in vitro and in vivo bystander effects and ¹ H-NMR-based metabolic profiling of soluble factors. Pure and Applied Chemistry, 2020, 92, 399-411.	0.9	0
15	Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine and Growth Factor Reviews, 2020, 51, 27-39.	3.2	45
16	Molecular Characterization of Temozolomide-Treated and Non Temozolomide-Treated Glioblastoma Cells Released Extracellular Vesicles and Their Role in the Macrophage Response. International Journal of Molecular Sciences, 2020, 21, 8353.	1.8	14
17	The Combination of the M2 Muscarinic Receptor Agonist and Chemotherapy Affects Drug Resistance in Neuroblastoma Cells. International Journal of Molecular Sciences, 2020, 21, 8433.	1.8	9
18	Functional Characterization of Muscarinic Receptors in Human Schwann Cells. International Journal of Molecular Sciences, 2020, 21, 6666.	1.8	10

#	Article	IF	CITATIONS
19	Effects mediated by the α7 nicotinic acetylcholine receptor on cell proliferation and migration in rat adipose-derived stem cells. European Journal of Histochemistry, 2020, 64, .	0.6	6
20	Functional Characterization of Cholinergic Receptors in Melanoma Cells. Cancers, 2020, 12, 3141.	1.7	9
21	Cross Interaction between M2 Muscarinic Receptor and Notch1/EGFR Pathway in Human Glioblastoma Cancer Stem Cells: Effects on Cell Cycle Progression and Survival. Cells, 2020, 9, 657.	1.8	20
22	Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules, 2020, 25, 1398.	1.7	5
23	M2 Receptor Activation Counteracts the Glioblastoma Cancer Stem Cell Response to Hypoxia Condition. International Journal of Molecular Sciences, 2020, 21, 1700.	1.8	5
24	Possible Correlation between Cholinergic System Alterations and Neuro/Inflammation in Multiple Sclerosis. Biomedicines, 2020, 8, 153.	1.4	29
25	Muscarinic receptors modulate Nerve Growth Factor production in rat Schwann-like adipose-derived stem cells and in Schwann cells. Scientific Reports, 2020, 10, 7159.	1.6	19
26	Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier. European Journal of Histochemistry, 2020, 64, .	0.6	12
27	M2 receptors activation modulates cell growth, migration and differentiation of rat Schwann-like adipose-derived stem cells. Cell Death Discovery, 2019, 5, 92.	2.0	16
28	Effects mediated by M2 muscarinic orthosteric agonist on cell growth in human neuroblastoma cell lines. Pure and Applied Chemistry, 2019, 91, 1641-1650.	0.9	6
29	Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: implication in peripheral inflammation. Scientific Reports, 2018, 8, 1319.	1.6	41
30	Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochemistry International, 2018, 118, 52-60.	1.9	19
31	M2 muscarinic receptor activation inhibits cell proliferation and migration of rat adiposeâ€mesenchymal stem cells. Journal of Cellular Physiology, 2018, 233, 5348-5360.	2.0	20
32	Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation. International Journal of Molecular Sciences, 2018, 19, 1631.	1.8	22
33	Copy number variations in healthy subjects. Case study: iPSC line CSSi005-A (3544) production from an individual with variation in 15q13.3 chromosome duplicating gene CHRNA7. Stem Cell Research, 2018, 32, 73-77.	0.3	4
34	Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives. Central Nervous System Agents in Medicinal Chemistry, 2017, 17, 100-108.	0.5	29
35	Cholinergic System and Neuroinflammation: Implication in Multiple Sclerosis. Central Nervous System Agents in Medicinal Chemistry, 2017, 17, 109-115.	0.5	25
36	Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2016, 17, 2009.	1.8	25

#	Article	IF	CITATIONS
37	Promising Therapies for Alzheimer';s Disease. Current Pharmaceutical Design, 2016, 22, 2050-2056.	0.9	21
38	Analgesic Effects Mediated by Muscarinic Receptors: Mechanisms and Pharmacological Approaches. Central Nervous System Agents in Medicinal Chemistry, 2016, 16, 218-226.	0.5	20
39	Cytotoxic and genotoxic effects mediated by M2 muscarinic receptor activation in human glioblastoma cells. Neurochemistry International, 2015, 90, 261-270.	1.9	21
40	The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. International Immunopharmacology, 2015, 29, 105-109.	1.7	33
41	Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients. International Immunopharmacology, 2015, 29, 152-157.	1.7	28
42	M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells. Cancer Biology and Therapy, 2014, 15, 1489-1498.	1.5	29
43	M2 Receptors Exert Analgesic Action on DRG Sensory Neurons by Negatively Modulating VR1 Activity. Journal of Cellular Physiology, 2014, 229, 783-790.	2.0	14
44	M2 muscarinic receptor activation regulates schwann cell differentiation and myelin organization. Developmental Neurobiology, 2014, 74, 676-691.	1.5	31
45	M2 receptor activation inhibits cell cycle progression and survival in human glioblastoma cells. Journal of Cellular and Molecular Medicine, 2013, 17, 552-566.	1.6	41
46	Relation between Pro-inflammatory Cytokines and Acetylcholine Levels in Relapsing-Remitting Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2012, 13, 12656-12664.	1.8	50
47	M2 muscarinic receptors inhibit cell proliferation in human glioblastoma cell lines. Life Sciences, 2012, 91, 1134-1137.	2.0	26
48	The mechanisms and possible sites of acetylcholine release during chick primary sensory neuron differentiation. Life Sciences, 2012, 91, 783-788.	2.0	15
49	The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS ONE, 2012, 7, e47977.	1.1	132
50	Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Developmental Neurobiology, 2012, 72, 713-728.	1.5	95
51	Acetylcholineâ€induced neuronal differentiation: muscarinic receptor activation regulates EGRâ€1 and REST expression in neuroblastoma cells. Journal of Neurochemistry, 2009, 108, 821-834.	2.1	21
52	Chapter 15 Novel Pharmacological Approaches to Schwann Cells as Neuroprotective Agents for Peripheral Nerve Regeneration. International Review of Neurobiology, 2009, 87, 295-315.	0.9	45
53	Muscarinic Acetylcholine Receptors: New Potential Therapeutic Targets in Antinociception and in Cancer Therapy. Recent Patents on CNS Drug Discovery, 2008, 3, 94-103.	0.9	40
54	Acetylcholine inhibits cell cycle progression in rat Schwann cells by activation of the M2 receptor subtype. Neuron Glia Biology, 2007, 3, 269-279.	2.0	39

#	Article	IF	CITATIONS
55	Acetylcholine and Regulation of Gene Expression in Developing Systems. Journal of Molecular Neuroscience, 2006, 30, 45-48.	1.1	16
56	Rat Schwann cells express M1–M4 muscarinic receptor subtypes. Journal of Neuroscience Research, 2006, 84, 97-105.	1.3	47
57	Detection of basal and potassiumâ€evoked acetylcholine release from embryonic DRG explants. Journal of Neurochemistry, 2004, 88, 1533-1539.	2.1	26
58	Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter. Journal of Neuroscience Research, 2004, 75, 194-202.	1.3	27
59	Cholinergic modulation of neurofilament expression and neurite outgrowth in chick sensory neurons. Journal of Neuroscience Research, 2003, 73, 227-234.	1.3	34
60	Modulation of cholinergic marker expression by nerve growth factor in dorsal root ganglia. Journal of Neuroscience Research, 2000, 62, 591-599.	1.3	8
61	Muscarinic receptors modulate intracellular calcium level in chick sensory neurons. Brain Research, 2000, 866, 65-72.	1.1	20
62	Muscarinic receptor subtypes expression in rat and chick dorsal root ganglia. Molecular Brain Research, 2000, 82, 1-10.	2.5	55
63	Acetylcholine synthesis and neuron differentiation. International Journal of Developmental Biology, 2000, 44, 689-97.	0.3	30
64	Expression of muscarinic m2 receptor mRNA in dorsal root ganglia of neonatal rat. Brain Research, 1999, 824, 63-70.	1.1	25
65	Neuronal and nonâ€neuronal cell populations of the avian dorsal root ganglia express muscarinic acetylcholine receptors. International Journal of Developmental Neuroscience, 1998, 16, 365-377.	0.7	26
66	Muscarinic cholinergic receptors in dorsal root ganglia of chick embryo: a radioligand binding and immunocytochemical study. Neuroscience Letters, 1995, 189, 139-142.	1.0	21
67	Cholinergic markers are expressed in developing and mature neurons of chick dorsal root ganglia. Journal of Neuroscience Research, 1994, 37, 247-255.	1.3	36