List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511900/publications.pdf Version: 2024-02-01

NINC XII

#	Article	IF	CITATIONS
1	Single-Cell Analysis Reveals Major Histocompatibility Complex II‒Expressing Keratinocytes in Pressure Ulcers with Worse Healing Outcomes. Journal of Investigative Dermatology, 2022, 142, 705-716.	0.3	14
2	Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041230.	2.3	9
3	Circular RNA Signatures of Human Healing and Nonhealing Wounds. Journal of Investigative Dermatology, 2022, 142, 2793-2804.e26.	0.3	2
4	Interleukin-17 governs hypoxic adaptation of injured epithelium. Science, 2022, 377, .	6.0	75
5	miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. Journal of Investigative Dermatology, 2021, 141, 659-671.	0.3	46
6	DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A2 in human vulnerable atherosclerotic plaque. Clinical Epigenetics, 2021, 13, 161.	1.8	16
7	Evaluation of MicroRNA Therapeutic Potential Using the Mouse In Vivo and Human Ex Vivo Wound Models. Methods in Molecular Biology, 2021, 2193, 67-75.	0.4	3
8	Targeting <scp>microRNA</scp> for improved skin health. Health Science Reports, 2021, 4, e374.	0.6	13
9	MicroRNA-34 Family Enhances Wound Inflammation by Targeting LGR4. Journal of Investigative Dermatology, 2020, 140, 465-476.e11.	0.3	53
10	Circular RNA hsa_circ_0084443 Is Upregulated in Diabetic Foot Ulcer and Modulates Keratinocyte Migration and Proliferation. Advances in Wound Care, 2020, 9, 145-160.	2.6	37
11	The Immune Functions of Keratinocytes in Skin Wound Healing. International Journal of Molecular Sciences, 2020, 21, 8790.	1.8	176
12	HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism. Communications Biology, 2020, 3, 768.	2.0	18
13	Investigation of Skin Wound Healing Using a Mouse Model. Methods in Molecular Biology, 2020, 2154, 239-247.	0.4	7
14	Next-Generation Sequencing Identifies the Keratinocyte-Specific miRNA Signature of Psoriasis. Journal of Investigative Dermatology, 2019, 139, 2547-2550.e12.	0.3	21
15	Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9443-9452.	3.3	48
16	WAKMAR2, a Long Noncoding RNA Downregulated in Human Chronic Wounds, Modulates Keratinocyte Motility and ProductionÂof Inflammatory Chemokines. Journal of Investigative Dermatology, 2019, 139, 1373-1384.	0.3	38
17	The Keratinocyte Transcriptome in Psoriasis: Pathways Related to Immune Responses, Cell Cycle and Keratinization. Acta Dermato-Venereologica, 2019, 99, 196-205.	0.6	52
18	Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 882-892.	0.3	34

#	Article	IF	CITATIONS
19	Resident T Cells in Resolved Psoriasis Steer Tissue Responses that Stratify Clinical Outcome. Journal of Investigative Dermatology, 2018, 138, 1754-1763.	0.3	82
20	Intratracheal Instillation of Perfluorohexane Modulates the Pulmonary Immune Microenvironment by Attenuating Early Inflammatory Factors in Patients With Smoke Inhalation Injury. Journal of Burn Care and Research, 2017, 38, 251-259.	0.2	9
21	Non-Coding RNAs: New Players in Skin Wound Healing. Advances in Wound Care, 2017, 6, 93-107.	2.6	53
22	MicroRNAs in skin wound healing. European Journal of Dermatology, 2017, 27, 12-14.	0.3	29
23	MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Scientific Reports, 2017, 7, 7797.	1.6	36
24	MicroRNA-132 with Therapeutic Potential in Chronic Wounds. Journal of Investigative Dermatology, 2017, 137, 2630-2638.	0.3	68
25	MicroRNA-146a suppresses IL-17–mediated skin inflammation and is genetically associated with psoriasis. Journal of Allergy and Clinical Immunology, 2017, 139, 550-561.	1.5	107
26	Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences, 2016, 73, 3861-3885.	2.4	987
27	MicroRNA-203 Inversely Correlates with Differentiation Grade, Targets c-MYC, and Functions as a Tumor Suppressor in cSCC. Journal of Investigative Dermatology, 2016, 136, 2485-2494.	0.3	39
28	Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue. Journal of Investigative Dermatology, 2016, 136, 640-648.	0.3	27
29	Abstract 1098: MiR-203 suppresses cutaneous squamous cell carcinoma growth and targets the myc oncogene. , 2016, , .		1
30	Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-1± treatment. Scientific Reports, 2015, 5, 12017.	1.6	35
31	New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life, 2015, 67, 601-610.	1.5	35
32	MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. Journal of Clinical Investigation, 2015, 125, 3008-3026.	3.9	165
33	MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. Journal of Investigative Dermatology, 2015, 135, 1676-1685.	0.3	127
34	Effects of statin on circulating microRNAome and predicted function regulatory network in patients with unstable angina. BMC Medical Genomics, 2015, 8, 12.	0.7	19
35	LC–MS Metabolomics of Psoriasis Patients Reveals Disease Severity-Dependent Increases in Circulating Amino Acids That Are Ameliorated by Anti-TNFα Treatment. Journal of Proteome Research, 2015, 14, 557-566.	1.8	84
36	Therapeutic Effect of Intravenous Infusion of Perfluorocarbon Emulsion on LPS-Induced Acute Lung Injury in Rats. PLoS ONE, 2014, 9, e87826.	1.1	31

#	Article	IF	CITATIONS
37	MicroRNA-31 Is Overexpressed in Cutaneous Squamous Cell Carcinoma and Regulates Cell Motility and Colony Formation Ability of Tumor Cells. PLoS ONE, 2014, 9, e103206.	1.1	57
38	MicroRNA-223 inhibits tissue factor expression in vascular endothelial cells. Atherosclerosis, 2014, 237, 514-520.	0.4	65
39	Activation of Tollâ€like receptors alters the micro <scp>RNA</scp> expression profile of keratinocytes. Experimental Dermatology, 2014, 23, 281-283.	1.4	25
40	Genetic Variants of the IL22 Promoter Associate to Onset of Psoriasis before Puberty and Increased IL-22 Production in T Cells. Journal of Investigative Dermatology, 2014, 134, 1535-1541.	0.3	39
41	miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis, 2014, 35, 1110-1120.	1.3	66
42	MiR-146a Negatively Regulates TLR2-Induced Inflammatory Responses in Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 1931-1940.	0.3	96
43	MicroRNA-19b functions as potential anti-thrombotic protector in patients with unstable angina by targeting tissue factor. Journal of Molecular and Cellular Cardiology, 2014, 75, 49-57.	0.9	65
44	Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. British Journal of Dermatology, 2013, 169, 563-570.	1.4	80
45	MicroRNA-31 Is Overexpressed in Psoriasis and Modulates Inflammatory Cytokine and Chemokine Production in Keratinocytes via Targeting Serine/Threonine Kinase 40. Journal of Immunology, 2013, 190, 678-688.	0.4	168
46	Are BIC (miR-155) Polymorphisms Associated with Eczema Susceptibility?. Acta Dermato-Venereologica, 2013, 93, 366-367.	0.6	7
47	Signature of Circulating MicroRNAs as Potential Biomarkers in Vulnerable Coronary Artery Disease. PLoS ONE, 2013, 8, e80738.	1.1	169
48	Interleukin-8 is regulated by miR-203 at the posttranscriptional level in primary human keratinocytes. European Journal of Dermatology, 2013, , .	0.3	17
49	MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis, 2012, 1, e3-e3.	2.1	87
50	MicroRNA-125b Down-regulates Matrix Metallopeptidase 13 and Inhibits Cutaneous Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion. Journal of Biological Chemistry, 2012, 287, 29899-29908.	1.6	161
51	MiRâ€21 is upâ€regulated in psoriasis and suppresses T cell apoptosis. Experimental Dermatology, 2012, 21, 312-314.	1.4	139
52	MiR-125b, a MicroRNA Downregulated in Psoriasis, Modulates Keratinocyte Proliferation by Targeting FGFR2. Journal of Investigative Dermatology, 2011, 131, 1521-1529.	0.3	186
53	Characterization of RISC-Associated Adenoviral Small RNAs. Methods in Molecular Biology, 2011, 721, 183-198.	0.4	5
54	The expression of microRNAâ€203 during human skin morphogenesis. Experimental Dermatology, 2010, 19, 854-856.	1.4	57

#	Article	IF	CITATIONS
55	MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte–associated antigen 4. Journal of Allergy and Clinical Immunology, 2010, 126, 581-589.e20.	1.5	261
56	The 5′-end heterogeneity of adenovirus virus-associated RNAI contributes to the asymmetric guide strand incorporation into the RNA-induced silencing complex. Nucleic Acids Research, 2009, 37, 6950-6959.	6.5	17
57	Adenovirus Virus-Associated RNAII-Derived Small RNAs Are Efficiently Incorporated into the RNA-Induced Silencing Complex and Associate with Polyribosomes. Journal of Virology, 2007, 81, 10540-10549.	1.5	105
58	In Vitro Methods to Study RNA Interference During an Adenovirus Infection. Methods in Molecular Medicine, 2007, 131, 47-61.	0.8	2
59	Suppression of RNA Interference by Adenovirus Virus-Associated RNA. Journal of Virology, 2005, 79, 9556-9565.	1.5	305