List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys. Materials Chemistry and Physics, 2022, 276, 125409.	2.0	9
2	Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scripta Materialia, 2021, 194, 113658.	2.6	95
3	Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140983.	2.6	30
4	Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials. Materials and Design, 2021, 202, 109548.	3.3	67
5	Fabrication of the Casting Products in Cu–Zn–Mn–Ni Medium-Entropy Brasses. Materials Transactions, 2021, 62, 856-863.	0.4	3
6	Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Materials Science and Engineering C, 2020, 107, 110322.	3.8	105
7	Alloy Design, Thermodynamics, and Electron Microscopy of Ternary Ti-Ag-Nb Alloy with Liquid Phase Separation. Materials, 2020, 13, 5268.	1.3	2
8	Development of Ti–Zr–Hf–Y–La high-entropy alloys with dual hexagonal-close-packed structure. Scripta Materialia, 2020, 186, 242-246.	2.6	28
9	Alloy Design and Fabrication of Ingots of Al–Mg–Li–Ca Light-Weight Medium Entropy Alloys. Materials Transactions, 2020, 61, 1369-1380.	0.4	15
10	Liquid Phase Separation in Ag-Co-Cr-Fe-Mn-Ni, Co Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B High Entropy Alloys for Biomedical Application. Crystals, 2020, 10, 527.	1.0	14
11	Development of Co–Cr–Mo–Fe–Mn–W and Co–Cr–Mo–Fe–Mn–W–Ag High-Entropy All Co–Cr–Mo Alloys. Materials Transactions, 2020, 61, 567-576.	oys Based	on ₁₃
12	Solidification Microstructure and Magnetic Properties of Ag-Rich Ag–Cu–La–Fe Immiscible Alloys. Materials Transactions, 2020, 61, 311-317.	0.4	5
13	Development and Perspectives of High Entropy alloys composed by light metal elements and that for metallic biomaterials with BCC. Keikinzoku/Journal of Japan Institute of Light Metals, 2020, 70, 14-23.	0.1	1
14	Development of Fe–P–C–Cu Immiscible Amorphous Alloys with Liquid Phase Separation. ISIJ International, 2020, 60, 2615-2624.	0.6	3
15	Electron Microscopy on Cu Element Distribution in Spheroidal Graphite Cast Iron. Materials Transactions, 2020, 61, 1853-1861.	0.4	2
16	Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2019, 172, 83-87.	2.6	124
17	Development of Fe-Co-Cr-Mn-Ni-C high entropy cast iron (HE cast iron) available for casting in air atmosphere. Materials and Design, 2019, 184, 108172.	3.3	23
18	Microstructure and Magnetic Properties of Cu–Ag–La–Fe Immiscible Alloys with an Amorphous Phase. Materials Transactions, 2019, 60, 554-560	0.4	9

#	Article	IF	CITATIONS
19	Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium-entropy brasses. Materials and Design, 2019, 181, 107900.	3.3	34
20	Solidification Microstructures of the Ingots Obtained by Arc Melting and Cold Crucible Levitation Melting in TiNbTaZr Medium-Entropy Alloy and TiNbTaZrX (X = V, Mo, W) High-Entropy Alloys. Entropy, 2019, 21, 483.	1.1	57
21	Additive manufacturing of dense components in beta‑titanium alloys with crystallographic texture from a mixture of pure metallic element powders. Materials and Design, 2019, 173, 107771.	3.3	93
22	Solidification Microstructure of High Entropy Alloys Composed With 4 Group (Ti, Zr, Hf), 5 Group (V,) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf

23	Solidification Microstructure and Magnetic Properties of Ag-rich Ag-Cu-La-Fe Immiscible Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 205-211.	0.1	4
24	Scanning Transmission Electron Microscopy (STEM) Observation of the Nuclei in Spheroidal Graphite Cast Iron. Materia Japan, 2019, 58, 86-86.	0.1	1
25	Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Journal of Alloys and Compounds, 2018, 753, 412-421.	2.8	112
26	Oxidation of Benzyl Alcohol over Nanoporous Au–CeO ₂ Catalysts Prepared from Amorphous Alloys and Effect of Alloying Au with Amorphous Alloys. Industrial & Engineering Chemistry Research, 2018, 57, 5599-5605.	1.8	30
27	Microstructure of Ti-Ag immiscible alloys with liquid phase separation. Journal of Alloys and Compounds, 2018, 738, 440-447.	2.8	33
28	Solid state amorphization of metastable Al0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy. Materials Chemistry and Physics, 2018, 210, 291-300.	2.0	23
29	3aA_MI-1Nuclei of BCC Phase in AlTi0.5ZrCuNiPd High Entropy Alloy. Microscopy (Oxford, England), 2018, 67, i25-i25.	0.7	0
30	Microstructure and Magnetic Properties of Cu-Ag-La-Fe Immiscible Alloys with an Amorphous Phase. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 45-51.	0.1	4
31	Microstructure of Co-Cr-Fe-Mn-Ni-Cu and Co-Cr-Fe-Mn-Ni-Ag High Entropy Alloys with Liquid Phase Separation. Materials Science Forum, 2018, 941, 1238-1241.	0.3	8
32	Solidification Microstructure of AlCoCrFeNi _{2.1} Eutectic High Entropy Alloy Ingots. Materials Transactions, 2018, 59, 255-264.	0.4	56
33	Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of Ïf phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 191-200.	2.6	49
34	In situ atomic-level observation of the formation of platinum silicide at platinum-silicon oxide interfaces under electron irradiation. AIP Advances, 2018, 8, 055110.	0.6	1
35	Contributions of a Higher Triplet Excited State to the Emission Properties of a Thermally Activated Delayed-Fluorescence Emitter. Physical Review Applied, 2017, 7, .	1.5	45
36	Formation of ultrafine-grained microstructure in Al 0.3 CoCrFeNi high entropy alloys with grain boundary precipitates. Materials Letters, 2017, 199, 120-123.	1.3	84

#	Article	IF	CITATIONS
37	Design and microstructure analysis of globules in Al-Co-La-Pb immiscible alloys with an amorphous phase. Materials and Design, 2017, 117, 338-345.	3.3	22
38	Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2017, 129, 65-68.	2.6	262
39	PM-09Microstructure of Ti-Nb-Ag Immiscible Alloys with Liquid Phase Separation. Microscopy (Oxford,) Tj ETQq1	1 8.7843	314 rgBT /Ove
40	The Formation of a Glass. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 251-252.	0.1	0
41	Skeletal Ni Catalysts Prepared from Amorphous Ni–Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane. ChemPhysChem, 2016, 17, 412-417.	1.0	15
42	Formation of Various Types of Globules in Co–Cu–Si–B Immiscible Alloy with Amorphous Phase. Materials Transactions, 2016, 57, 156-162.	0.4	5
43	Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation. Journal of Applied Physics, 2016, 119, .	1.1	4
44	Determination of deep trapping lifetime in organic semiconductors using impedance spectroscopy. Applied Physics Letters, 2016, 108, 053305.	1.5	16
45	Skeletal Au prepared from Au–Zr amorphous alloys with controlled atomic compositions and arrangement for active oxidation of benzyl alcohol. Journal of Materials Chemistry A, 2016, 4, 8458-8465.	5.2	12
46	Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors. Journal of Nanoscience and Nanotechnology, 2016, 16, 3219-3222.	0.9	3
47	Microstructure of nanocrystalline globules embedded in an amorphous matrix of Fe–Cuâ€based immiscible alloys. Surface and Interface Analysis, 2016, 48, 1252-1255.	0.8	5
48	An Amorphous Phase Formation in Co-Cu-Zr-Ti-B Alloy System. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 217-222.	0.1	2
49	PM-01Electron-Irradiation-Induced Structural Changes at Pt/SiO _x Interfaces at 773 K. Microscopy (Oxford, England), 2016, 65, i32.1-i32.	0.7	1
50	In situ transmission-electron-microscopy observation of solid-state amorphization behavior in Ti50Ni44Fe6 alloy by high-voltage electron microscopy. Acta Materialia, 2016, 104, 201-209.	3.8	3
51	Hydrogenation of 1-octene over skeletal Pd catalysts prepared from Pd–Zr amorphous alloys and the effect of Ni addition. Catalysis Today, 2016, 265, 138-143.	2.2	7
52	Irradiation-induced ordering in Pt-Cu alloy focusing on Pt7Cu. Materials Research Society Symposia Proceedings, 2015, 1760, 114.	0.1	0
53	Phase transition of sigma-CrFe under fast electron irradiation. Materials Research Society Symposia Proceedings, 2015, 1743, 64.	0.1	0
54	Histone methylationâ€mediated silencing of miRâ€139 enhances invasion of nonâ€smallâ€cell lung cancer. Cancer Medicine, 2015, 4, 1573-1582.	1.3	41

#	Article	IF	CITATIONS
55	Solution-processed dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene transistor memory based on phosphorus-doped silicon nanoparticles as a nano-floating gate. Applied Physics Express, 2015, 8, 101601.	1.1	8
56	An amorphous phase formation at palladium / silicon oxide (Pd/SiOx) interface through electron irradiation - electronic excitation process. AIP Advances, 2015, 5, 117145.	0.6	2
57	Impact of dopants and silicon structure dimensions on {113}-defect formation during 2 MeV electron irradiation in an UHVEM. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1160-1165.	0.8	1
58	In situ UHVEM irradiation study of intrinsic point defect behavior in Si nanowire structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 275-281.	0.8	1
59	Microstructure of Rapidly Solidified Fe-M-Si-B (M=Cu, Ag, Sn) Immiscible Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 175-182.	0.1	9
60	In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59, 32-42.	1.8	161
61	Amorphous phase formation in Co–Cu–Zr–B-based immiscible alloys. Journal of Alloys and Compounds, 2015, 649, 1174-1181.	2.8	16
62	<i>Pseudomonas aeruginosa</i> quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1719-1724.	0.6	6
63	Dynamic strain aging of Al 0.3 CoCrFeNi high entropy alloy single crystals. Scripta Materialia, 2015, 108, 80-83.	2.6	119
64	Formation of amorphous phase with crystalline globules in Fe–Cu–Si–B and Fe–Cu–Zr–B immiscible alloys. Intermetallics, 2015, 61, 56-65.	1.8	32
65	Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation. Journal of Applied Physics, 2015, 117, .	1.1	13
66	Prediction of improvement in left atrial function index after catheter ablation for atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 2015, 44, 151-160.	0.6	7
67	Hippo and TCF-β interplay in the lung field. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L756-L767.	1.3	74
68	Microstructure of rapidly solidified Co–Cu–Si–B immiscible alloys with an amorphous phase. Journal of Alloys and Compounds, 2015, 650, 342-350.	2.8	8
69	Characteristics and Catheter Ablation of Focal Atrial Tachycardia Originating From the Interatrial Septum. Heart Lung and Circulation, 2015, 24, 988-995.	0.2	5
70	Formation of nanoglobules with core–shell structure by liquid phase separation in Fe–Cu–Zr–B immiscible alloy. Journal of Alloys and Compounds, 2015, 619, 332-337.	2.8	20
71	Formation of amorphous phase with crystalline globules in Fe–Cu–Nb–B immiscible alloys. Journal of Alloys and Compounds, 2015, 619, 267-274.	2.8	37
72	Amorphous phase formation in Fe–Ag-based immiscible alloys. Journal of Alloys and Compounds, 2015, 619, 311-318.	2.8	23

#	Article	IF	CITATIONS
73	Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C) Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells. PLoS ONE, 2015, 10, e0141746.	1.1	14
74	Stability of oxide particles under electron irradiation in a 9Cr ODS steel at 400 °C. Journal of Nuclear Materials, 2014, 455, 724-727.	1.3	16
75	Mechanism of instability of carbides in Fe–TaC alloy under high energy electron irradiation at 673 K. Journal of Nuclear Materials, 2014, 455, 695-699.	1.3	10
76	Ultra High Voltage Electron Microscopy Study of {113}-Defect Generation in Si Nanowires. Materials Research Society Symposia Proceedings, 2014, 1713, 1.	0.1	1
77	Phase stability of σ-CrFe intermetallic compound under fast electron irradiation. Acta Materialia, 2014, 71, 195-205.	3.8	12
78	Effect of two-stage deformation on magnetic properties of hot-deformed Nd–Fe–B permanent magnets. Scripta Materialia, 2014, 78-79, 37-40.	2.6	20
79	Irradiation Resistance of Multicomponent Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 180-183.	1.1	155
80	Irradiation damage in multicomponent equimolar alloys and high entropy alloys (HEAs). Microscopy (Oxford, England), 2014, 63, i22.2-i22.	0.7	1
81	Synthesis of refractory conductive niobium carbide nanowires within the inner space of carbon nanotube templates. Applied Physics Express, 2014, 7, 015101.	1.1	5
82	Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter. Applied Physics Letters, 2014, 104, .	1.5	48
83	Entangled Duplex Structure and Polycrystalline Globule Formation through Multistep Liquid-Phase Separation in Cu–Fe–Zr–B Alloys. Materials Transactions, 2014, 55, 304-310.	0.4	6
84	<i>In Situ</i> TEM Observation of Structural Changes in Rapidly Solidified bcc Solid-Solution Phase in Ti–Cr Alloy Focusing on Spontaneous Vitrification (SV). Materials Transactions, 2014, 55, 451-457.	0.4	0
85	Dynamic Observation of FeSiBPCu Alloys for Crystallization via MeV Electron Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 364-368.	0.2	7
86	New Approach to <i>In Situ</i> Observation Experiments under Irradiation in High Voltage Electron Microscopes. Materials Transactions, 2014, 55, 423-427.	0.4	10
87	Ti- and Zr-based metal-air batteries. Journal of Power Sources, 2013, 242, 400-404.	4.0	12
88	MeV electron-irradiation-induced structural change in the bcc phase of Zr–Hf–Nb alloy with an approximately equiatomic ratio. Intermetallics, 2013, 38, 70-79.	1.8	57
89	Electron-irradiation-induced phase transition in Cr2M (M = Ti and Al) intermetallic compounds. Journal of Alloys and Compounds, 2013, 579, 646-653.	2.8	9
90	Solid-state amorphization in a Ti2Pd intermetallic compound under fast-electron irradiation. Journal of Alloys and Compounds, 2013, 581, 324-329.	2.8	3

#	Article	IF	CITATIONS
91	Advanced Materials Design by Irradiation of High Energy Particles. , 2013, , 137-153.		5
92	MeV Electron Irradiation Induced Solid-State Amorphization (SSA) in B2 Intermetallic Compounds. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 185-190.	0.1	2
93	Electron-irradiation-induced structural change in Zr–Hf–Nb alloy. Intermetallics, 2012, 26, 122-130.	1.8	63
94	MeV electron irradiation induced crystallization in metallic glasses: Atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. Journal of Non-Crystalline Solids, 2012, 358, 502-518.	1.5	35
95	Formation of macroscopically phase separated Cu-colored melt-spun ribbon in (Fe0.5Cu0.5)100â^'B (x= 0,) Tj E	TQq1_1 0.7	784314 rgBT
96	Microstructure observation using MeV-electron-irradiation-induced amorphization. Journal of Alloys and Compounds, 2011, 509, S202-S205.	2.8	4
97	Electron-irradiation-induced solid-state amorphization in supersaturated Ni–Zr solid solutions. Intermetallics, 2011, 19, 511-517.	1.8	10
98	Stability of B2 phase in Ti–Ni–Fe alloys against MeV electron-irradiation-induced solid-state amorphization and martensite transformation. Intermetallics, 2011, 19, 1313-1318.	1.8	19
99	Effect of Ni-addition on the crystallization behavior and the oxidation resistance of Zr-based metallic glasses below the crystallization temperature. Journal of Non-Crystalline Solids, 2011, 357, 1136-1140.	1.5	9
100	Tensile deformation behavior of Nd–Fe–B alloys. Scripta Materialia, 2011, 65, 743-746.	2.6	12
101	Control of Nano-crystalline Structure in Fe-Nd-B Metallic Glass by MeV Electron Irradiation Induced Crystallization. Materia Japan, 2010, 49, 323-324.	0.1	0
102	Structure and Mechanical Properties of Melt-Extracted Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High Bending Ductility. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 515-519.	0.2	0
103	Fabrication of Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High-Ductility by Arc-Melt-Type Melt-Extraction Method. Materials Transactions, 2010, 51, 377-380.	0.4	0
104	In situ TEM observation of the glass-to-liquid transition of metallic glass in Fe–Zr–B–Cu alloy. Scripta Materialia, 2010, 63, 1020-1023.	2.6	20
105	Lowâ€Temperature Processable Organicâ€Inorganic Hybrid Gate Dielectrics for Solutionâ€Based Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 4706-4710.	11.1	39
106	Preparation of Ti-Based and Zr-Based Bio-Metallic Wires by Arc-Melting Type Melt-Extraction Method. Materials Science Forum, 2010, 638-642, 2127-2132.	0.3	0
107	Device characteristics of short-channel polymer field-effect transistors. Applied Physics Letters, 2010, 97, .	1.5	36
108	Electron-irradiation-induced solid-state amorphization caused by thermal relaxation of lattice defects. Intermetallics, 2010, 18, 441-450.	1.8	12

#	Article	IF	CITATIONS
109	Temperature dependence of MeV-electron-irradiation-induced nanocrystallization in Zr–Pt metallic glass. Intermetallics, 2010, 18, 767-772.	1.8	6
110	Temperature dependence in density-fluctuation-induced crystallization in metallic glass by MeV electron irradiation. Intermetallics, 2010, 18, 1803-1808.	1.8	13
111	Formation of dual-layer melt-spun ribbon through liquid phase separation. Intermetallics, 2010, 18, 2136-2144.	1.8	15
112	Multi-scale crystalline Cu globule dispersed Fe-based metallic glass formation by multi-step liquid phase separation. Journal of Alloys and Compounds, 2010, 494, 295-300.	2.8	34
113	Formation of melt-extracted wire of Fe–Cu–Si–B alloy with core-wire/surface-cover-layer structure by arc-melt-type melt-extraction method. Journal of Alloys and Compounds, 2010, 495, L1-L4.	2.8	17
114	Formation of macroscopic phase-separated dual-layer melt-spun ribbon from Co–Si–B–Cu alloy. Journal of Alloys and Compounds, 2010, 505, L43-L46.	2.8	9
115	In situ TEM observations of irradiation-induced phase change in tungsten. Journal of Materials Science, 2009, 44, 1965-1968.	1.7	6
116	Electron irradiation-induced nanocrystallization of amorphous Fe85B15 alloy: Evidence for athermal nature. Acta Materialia, 2009, 57, 1300-1307.	3.8	28
117	Electron-irradiation-induced nano-crystallization in quasicrystal-forming Zr-based metallic glass. Intermetallics, 2009, 17, 657-668.	1.8	19
118	Preparation of Ni–Nb-based metallic glass wires by arc-melt-type melt-extraction method. Journal of Alloys and Compounds, 2009, 485, 304-312.	2.8	10
119	Microstructual Observation by Use of the Difference in the Susceptibility to C-A Transition under MeV Electron Irradiation. Materia Japan, 2009, 48, 607-607.	0.1	1
120	Fabrication of Ti-Zr Binary Metallic Wire by Arc-Melt-Type Melt-Extraction Method. Materials Transactions, 2009, 50, 872-878.	0.4	7
121	Amorphization and subsequent crystallization in Zr66.7Ni33.3alloy under MeV electron irradiation. Journal of Physics: Conference Series, 2009, 165, 012075.	0.3	2
122	Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philosophical Magazine Letters, 2008, 88, 169-179.	0.5	89
123	Electron Irradiation Induced Crystal-to-Amorphous-to-Crystal (C-A-C) Transition in Intermetallic Compounds. Materials Research Society Symposia Proceedings, 2008, 1128, 54901.	0.1	2
124	é‡'å±žææ–™ã«ãŠã'ã,‹é›»åç·šç§å°"èª⁻èµ·ç›,転移. Materia Japan, 2008, 47, 519-523.	0.1	8
125	Preparation of Zr-Based Metallic Glass Wires for Biomaterials by Arc-Melting Type Melt-Extraction Method. Materials Transactions, 2008, 49, 1385-1394.	0.4	18
126	Nano-Crystallization and Stability of an Amorphous Phase in Fe-Nd-B Alloy under 2.0 MeV Electron Irradiation. Materials Transactions, 2008, 49, 265-274.	0.4	3

#	Article	IF	CITATIONS
127	Electron Irradiation Induced Crystal-to-amorphous-to-crystal (C-A-C) Transition. Materia Japan, 2008, 47, 644-644.	0.1	0
128	Phase stability in nanocrystalline metals: A thermodynamic consideration. Journal of Applied Physics, 2007, 102, 124303.	1.1	12
129	Pinpoint Nano-Crystallization and Magnetization in Fe-Nd-B Metallic Glass by Electron Irradiation. Materials Science Forum, 2007, 561-565, 1403-1406.	0.3	1
130	Unique Nano-Crystalline Structure Formation in Zr-Pd Metallic Glass by Electron Irradiation Technique. Materials Science Forum, 2007, 561-565, 1407-1412.	0.3	0
131	Phase Stability of Crystalline and Amorphous Phases and Formation of Nanostructure in Zr-Pd and Zr-Pt Alloys Under Electron Irradiation. Materials Research Society Symposia Proceedings, 2007, 1048, 3.	0.1	0
132	Preparation of Zr-based Metallic Class Wire for Biomedical Application. Materials Research Society Symposia Proceedings, 2007, 1048, 13.	0.1	1
133	Electron Irradiation Induced Crystallization of Supercooled Liquid in Zr Based Alloys. Materials Transactions, 2007, 48, 151-157.	0.4	2
134	Electron Irradiation Induced Crystallization Behavior in Zr _{66.7} M _{33.3} (M=Cu,) Tj ETC	2q000 rg	BT /Overlock 6
135	Electron Irradiation Induced Crystal-to-Amorphous-to-Crystal Transition in Some Metallic Glasses. Materials Transactions, 2007, 48, 1651-1658.	0.4	23
136	Electron Irradiation Induced Phase Transformation in Fe-Nd-B Alloys. Materials Transactions, 2007, 48, 1659-1664.	0.4	10
137	Phase Stability of an Amorphous Phase Against Electron Irradiation Induced Crystallization in Fe-Based Metallic Classes. Materials Transactions, 2007, 48, 1340-1349.	0.4	7
138	Electron irradiation induced nano-crystallization in Zr66.7Ni33.3 amorphous alloy and Zr60Al15Ni25 metallic glass. Intermetallics, 2007, 15, 211-224.	1.8	35
139	In situ observation of solid-state amorphization in Nd2Fe14B alloy by electron irradiation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 1111-1114.	2.6	6
140	Electron irradiation induced crystallization and amorphization in Fe77Nd4.5B18.5 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 1115-1118.	2.6	11
141	Electron irradiation induced phase transformation of supercooled liquid and amorphous phases in Zr66.7Cu33.3 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 605-608.	2.6	4
142	Lattice distortion and its effects on physical properties of nanostructured materials. Journal of Physics Condensed Matter, 2007, 19, 236217.	0.7	32
143	Electron Irradiation–Induced Phase Transition of an Amorphous Phase and Face-Centered Cubic Solid Solutions in Zr66.7Pd33.3 Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 223-235.	1.1	14
144	Solid state amorphization and crystallization in Zr66.7Pd33.3 metallic glass. Intermetallics, 2006, 14, 1027-1032.	1.8	22

#	Article	IF	CITATIONS
145	Deformation behavior of Zr60.0Al15.0Ni25.0 metallic glass. Intermetallics, 2006, 14, 1079-1084.	1.8	2
146	Effect of crystallization behavior on the oxidation resistance of a Zr–Al–Cu metallic glass below the crystallization temperature. Journal of Non-Crystalline Solids, 2006, 352, 3015-3026.	1.5	14
147	Phase Transformation in Fe81.0Zr9.0B10.0 Metallic Glass during Thermal Annealing and Electron Irradiation. ISIJ International, 2006, 46, 1371-1380.	0.6	22
148	Electron-Irradiation Induced Phase Transformation of Amorphous, Supercooled Liquid and Crystalline Phases in Zr _{66.7} Cu _{33.3} Metallic Glass. Materials Transactions, 2006, 47, 1469-1479.	0.4	16
149	Electron Irradiation Induced Phase Transformation in Nd ₂ Fe ₁₄ B Alloy. Materials Transactions, 2006, 47, 1762-1768.	0.4	6
150	Control of a Nanocomposite Structure in Fe ₈₆ Nd ₉ B ₅ Alloy by Electron Irradiation. Materials Transactions, 2006, 47, 335-340.	0.4	5
151	Formation of Nanocrystalline Globules and Metallic Glass in Fe _{70−<i>x</i>} Cu <i>_x</i> Zr ₁₀ B ₂₀ (<i>x</i> =0–70) Alloys. Materials Transactions, 2006, 47, 1105-1114.	0.4	31
152	Martensitic Transformation Behavior and Shape Memory Properties of Ti–Ni–Pt Melt-Spun Ribbons. Materials Transactions, 2006, 47, 540-545.	0.4	6
153	Superplastic Deformation and Thermal Crystallization Behavior of Supercooled Liquid in Zr-Ni Based Metallic Glass. Materials Science Forum, 2006, 512, 37-40.	0.3	2
154	Effect of Electron Irradiation on Nanocrystallization of Fe-Nd-B Amorphous Alloys. Materials Science Forum, 2006, 512, 107-110.	0.3	3
155	Electron Irradiation Induced Nanocrystallization Behavior in Fe ₇₁ Zr ₉ B ₂₀ Metallic Glass. Materials Transactions, 2005, 46, 608-615.	0.4	13
156	Martensitic Transformation Behavior and Shape Memory Properties of Ti-Ni-Pt Melt Spun Ribbon. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 628-633.	0.2	0
157	Electron Irradiation Induced Nano-Crystallization in Fe ₇₇ Nd _{4.5} B _{18.5} Metallic Glass. Materials Transactions, 2005, 46, 1814-1819.	0.4	26
158	Relationship between Deformation and Crystallization in Zr ₆₀ Al ₁₅ Ni ₂₅ and Zr ₆₅ Al _{7.5} Cu _{27.5} Metallic Glass. Materials Transactions, 2005, 46, 2908-2914.	0.4	1
159	Thermal Crystallization and Electron Irradiation Induced Phase Transformation Behavior in Zr _{66.7} Cu _{33.3} Metallic Glass. Materials Transactions, 2005, 46, 616-621.	0.4	27
160	Electron irradiation induced phase transformation in Zr66.7Cu33.3 and Zr66.7Pd33.3 metallic glass. Scripta Materialia, 2005, 53, 1401-1405.	2.6	18
161	Phase Transformation and Microstructure Change in Fe-Zr-B Amorphous Alloys by Thermal Annealing and Electron Irradiation. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 295-298.	0.1	1
162	Electron Irradiation Induced Amorphization and Crystallization in Zr _{66.7} Cu _{33.3} Metallic Glass. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 661-664.	0.1	3

#	Article	IF	CITATIONS
163	Transformation Behavior of TiNiPt Thin Films Fabricated Using Melt Spinning Technique. Materials Research Society Symposia Proceedings, 2004, 842, 144.	0.1	6
164	Electron irradiation induced crystallization of the amorphous phase in Zr65.0Al7.5Ni10.0Cu17.5metallic glass. Science and Technology of Advanced Materials, 2004, 5, 57-67.	2.8	29
165	Electron Irradiation Induced Crystallization of the Amorphous Phase in Zr-Cu Based Metallic Glasses with Various Thermal Stability. Materials Transactions, 2004, 45, 13-23.	0.4	38
166	Phase stability of amorphous and crystalline phases in melt-spun Zr66.7Cu33.3 alloy under electron irradiation. Scripta Materialia, 2003, 48, 1237-1242.	2.6	64
167	Effect of electron irradiation on nano-crystallization in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 343, 13-21.	2.6	22
168	Effect of irradiation temperature on the electron irradiation induced nanocrystallization behavior in Fe88.0Zr9.0B3.0 amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 347, 136-144.	2.6	19
169	Electron irradiation induced crystallization behavior in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 251-260.	2.6	33
170	Thermal stability and electron irradiation effect on Zr-based amorphous alloys. Journal of Applied Physics, 2003, 93, 912-918.	1.1	38
171	Long period structure of \hat{l}^2 -FeSi2. Journal of Alloys and Compounds, 2002, 339, 96-99.	2.8	6
172	Formation of nanocrystalline structure during electron irradiation induced crystallization in amorphous Fe-Zr-B alloys. Science and Technology of Advanced Materials, 2002, 3, 119-128.	2.8	53
173	Effect of electron irradiation on the phase stability of Fe–9Zr–3B alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 323, 218-225.	2.6	62
174	Title is missing!. Journal of Materials Science, 2002, 37, 1429-1435.	1.7	8
175	Eutectoid decomposition in rapidly solidified α-Fe2Si5-based thermoelectric alloys. Journal of Alloys and Compounds, 2001, 316, 212-219.	2.8	12
176	Effect of rapid solidification on microstructure of various Fe29.5â^'xSi70.5â^'x (0.0â‰æâ‰9.7) alloys. Journal of Alloys and Compounds, 2000, 312, 295-301.	2.8	22
177	Temperature dependence of β-phase transformation in Cu added Fe2Si5 thermoelectric material. Journal of Alloys and Compounds, 1999, 292, 181-190.	2.8	24
178	Microstructure of Rapidly Solidified Melt-Spun Ribbon in AlCoCrFeNi _{2.1} Eutectic High-Entropy Alloys. Materials Science Forum, 0, 879, 1350-1354.	0.3	3
179	Fabrication of the Beta-Titanium Alloy Rods from a Mixture of Pure Metallic Element Powders via Selected Laser Melting. Materials Science Forum, 0, 941, 1260-1263.	0.3	6
180	Fabrication of Be-Ta Ti Alloys without Pre-Alloyed Powders via SLM. Materials Science Forum, 0, 1016, 1797-1801.	0.3	0

#	Article	IF	CITATIONS
181	Solid State Amorphization and Alloy Parameters for High Entropy Alloys. Materials Science Forum, 0, 1016, 990-996.	0.3	0
182	Effect of Chemical Composition on Grain Refinement of Al _x CoCrFeNi High Entropy Alloys with NiAl Grain Boundary Precipitates. Materials Science Forum, 0, 1016, 1690-1695.	0.3	4