Marcos N Eberlin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9511757/marcos-n-eberlin-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

729	20,572	67	99
papers	citations	h-index	g-index
757	22,555	4.3	6.8
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
729	Liquid chromatography coupled to Venturi easy ambient sonic spray ionization mass spectrometry. <i>Talanta</i> , 2022 , 238, 123004	6.2	O
728	Evaluation of a serum-free culture medium for the enhanced vitrification cryosurvival of bovine in vitro-derived embryos. <i>Livestock Science</i> , 2022 , 104922	1.7	
727	Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi <i>PLoS ONE</i> , 2022 , 17, e0265824	3.7	O
726	Dietary protein sources and their effects on faecal odour and the composition of volatile organic compounds in faeces of French Bulldogs. <i>Journal of Animal Physiology and Animal Nutrition</i> , 2021 , 105 Suppl 1, 65-75	2.6	1
725	Impact of ripening on the health-promoting components from fruta-do-lobo (Solanum lycocarpum St. Hill). <i>Food Research International</i> , 2021 , 139, 109910	7	3
724	ELOVL5 Participates in Embryonic Lipid Determination of Cellular Membranes and Cytoplasmic Droplets. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
723	How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. <i>Chemical Record</i> , 2021 , 21, 2762-2781	6.6	6
722	Unveiling the mechanism of N-methylation of indole with dimethylcarbonate using either DABCO or DBU as catalyst. <i>Journal of Mass Spectrometry</i> , 2021 , 56, e4707	2.2	1
721	Rapid and direct detection of artificially aged papers employing easy ambient sonic-spray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9046	2.2	1
720	One-carbon metabolism and global DNA methylation in mothers of individuals with Down syndrome. <i>Human Cell</i> , 2021 , 34, 1671-1681	4.5	1
719	Metabolite mass spectrometry profiling of cacao genotypes reveals contrasting resistances to Ceratocystis cacaofunesta phytopathogen. <i>Electrophoresis</i> , 2021 , 42, 2519-2527	3.6	
718	Lipid profile of extracellular vesicles and their relationship with bovine oocyte developmental competence: New players in intra follicular cell communication. <i>Theriogenology</i> , 2021 , 174, 1-8	2.8	1
717	Effects of paternal diet and antioxidant addition to the semen extender on bovine semen characteristics and on the phenotype of the resulting embryo. <i>Theriogenology</i> , 2021 , 175, 23-33	2.8	1
716	Characteristic MALDI-MS lipid profiles of Gir, Holstein and crossbred (Gir x Holstein) oocytes recovered by ovum pick-up. <i>Livestock Science</i> , 2021 , 243, 104380	1.7	2
715	Modified SARA Method to Unravel the Complexity of Resin Fraction(s) in Crude Oil. <i>Energy & Enels</i> , 2020 , 34, 16006-16013	4.1	6
714	Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	5
713	Optimization of (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities. <i>BMC Chemistry</i> , 2020 , 14, 34	3.7	3

(2020-2020)

712	Molecular ion: A more contemporary definition. Journal of Mass Spectrometry, 2020, 55, e4598	2.2	3
711	Quality and composition of three palm oils isolated by clean and sustainable process. <i>Journal of Cleaner Production</i> , 2020 , 259, 120905	10.3	5
710	A Rapid and Versatile Method to Determine Methanol in Biofuels and Gasoline by Ambient Mass Spectrometry using a V-EASI Source. <i>Energy & Description</i> 2020, 34, 4595-4602	4.1	5
709	Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. <i>Food Research International</i> , 2020 , 133, 109168	7	11
708	DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions. <i>Cancer Research</i> , 2020 , 80, 1246-1257	10.1	25
707	Comprehensive Triacylglycerol Characterization of Oils and Butters of 15 Amazonian Oleaginous Species by ESI-HRMS/MS and Comparison with Common Edible Oils and Fats. <i>European Journal of Lipid Science and Technology</i> , 2020 , 122, 2000019	3	7
706	Biosurfactants Production Using Permeate from Whey Ultrafiltration and Bioproduct Recovery by Membrane Separation Process. <i>Journal of Surfactants and Detergents</i> , 2020 , 23, 539-551	1.9	9
705	Assessing the Metabolic Impact of Ground Chia Seed in Overweight and Obese Prepubescent Children: Results of a Double-Blind Randomized Clinical Trial. <i>Journal of Medicinal Food</i> , 2020 , 23, 224-2	232 ⁸	6
704	Triple quadrupole-mass spectrometry protocols for the analysis of NBOMes and NBOHs in blotter papers. <i>Forensic Science International</i> , 2020 , 309, 110184	2.6	5
703	Peptide profile and angiotensin-converting enzyme inhibitory activity of Prato cheese with salt reduction and Lactobacillus helveticus as an adjunct culture. <i>Food Research International</i> , 2020 , 133, 10	9790	8
702	Forensic determination of crossing lines involving stamp and pen inks by mass spectrometry imaging. <i>Analytical Methods</i> , 2020 , 12, 951-958	3.2	6
701	Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 1431-1439	4.4	7
700	Extraction and assessment of oil and bioactive compounds from cashew nut (Anacardium occidentale) using pressurized n-propane and ethanol as cosolvent. <i>Journal of Supercritical Fluids</i> , 2020 , 157, 104686	4.2	17
699	Targeted metabolomics: Liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. <i>Talanta</i> , 2020 , 210, 120640	6.2	11
698	High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. <i>Food Chemistry</i> , 2020 , 333, 127482	8.5	14
697	Lacustrine versus Marine Oils: Fast and Accurate Molecular Discrimination via Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Multivariate Statistics. <i>Energy &</i> Fuels, 2020 , 34, 9222-9230	4.1	2
696	Improvement of lipid quality on nile tilapia fillet composition with low protein feeding treatment. <i>Acta Scientiarum - Technology</i> , 2020 , 42, e45271	0.5	1
695	Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin's lymphoma urinary metabolite markers. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 7469-7480	4.4	3

694	Interference of Seasonal Variation on the Antimicrobial and Cytotoxic Activities of the Essential Oils from the Leaves of Iryanthera polyneura in the Amazon Rain Forest. <i>Chemistry and Biodiversity</i> , 2019 , 16, e1900374	2.5	3
693	Modulation of long-chain Acyl-CoA synthetase on the development, lipid deposit and cryosurvival of in vitro produced bovine embryos. <i>PLoS ONE</i> , 2019 , 14, e0220731	3.7	10
692	Lipid characterization of -produced bovine embryos with distinct kinetics of development. <i>Zygote</i> , 2019 , 27, 413-422	1.6	4
691	Enzymatic treatment improves the antioxidant and antiproliferative activities of Adenanthera pavonina L. seeds. <i>Biocatalysis and Agricultural Biotechnology</i> , 2019 , 18, 101002	4.2	6
690	Fecal bile acid profile after Roux-en-Y gastric bypass and its association with the remission of type 2 diabetes in obese women: A preliminary study. <i>Clinical Nutrition</i> , 2019 , 38, 2906-2912	5.9	10
689	Effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin. <i>Journal of Biological Inorganic Chemistry</i> , 2019 , 24, 171-178	3.7	1
688	Investigating the Potential of Ion Mobility-Mass Spectrometry for Microalgae Biomass Characterization. <i>Analytical Chemistry</i> , 2019 , 91, 9266-9276	7.8	5
687	Peptide profile of Camembert-type cheese: Effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. <i>Food Research International</i> , 2019 , 123, 393-402	7	13
686	Comparative Proteomic Analysis of Murine Cutaneous Lesions Induced by or. <i>ACS Infectious Diseases</i> , 2019 , 5, 1295-1305	5.5	4
685	Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. <i>Food Research International</i> , 2019 , 123, 189-197	7	12
684	Sequential high-pressure extraction to obtain capsinoids and phenolic compounds from biquinho pepper (Capsicum chinense). <i>Journal of Supercritical Fluids</i> , 2019 , 150, 112-121	4.2	19
683	The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 3560-3566	3.2	11
682	Mechanism of Palladium(II)-Mediated Uncaging Reactions of Propargylic Substrates. <i>ACS Catalysis</i> , 2019 , 9, 3792-3799	13.1	8
681	Monitoring indole alkaloid production by Penicillium digitatum during infection process in citrus by Mass Spectrometry Imaging and molecular networking. <i>Fungal Biology</i> , 2019 , 123, 594-600	2.8	15
68o	N, N', N?-trisubstituted guanidines: Synthesis, characterization and evaluation of their leishmanicidal activity. <i>European Journal of Medicinal Chemistry</i> , 2019 , 171, 116-128	6.8	4
679	Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. <i>Journal of Organic Chemistry</i> , 2019 , 84, 5118-5128	4.2	12
678	Label-Free Proteomic Analysis Reveals Parasite-Specific Protein Alterations in Macrophages Following Leishmania amazonensis, Leishmania major, or Leishmania infantum Infection. <i>ACS Infectious Diseases</i> , 2019 , 5, 851-862	5.5	8
677	Fast UHPLC-MS/MS method for analysis of furanylfentanyl in different seized blotter papers. <i>Drug Testing and Analysis</i> , 2019 , 11, 178-183	3.5	5

676	NBOMe instability in whole blood. Forensic Toxicology, 2019, 37, 82-89	2.6	7
675	Mass Spectrometry as a Clinical Integrative Tool to Evaluate Hepatocellular Carcinoma: Moving to the Mainstream. <i>Expert Review of Gastroenterology and Hepatology</i> , 2019 , 13, 821-825	4.2	0
674	Precipitation of nonsugars as a model of color reduction in sugarcane juice (Saccharum spp.) submitted to the hydrogen peroxide clarification of the crystal sugar process. <i>Journal of Food Processing and Preservation</i> , 2019 , 43, e14137	2.1	
673	Determination of tryptoquialanines A and C produced by Penicillium digitatum in oranges: Are we safe?. <i>Food Chemistry</i> , 2019 , 301, 125285	8.5	8
672	Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. <i>Food Research International</i> , 2019 , 125, 108561	7	17
671	Physicochemical changes and bitterness of whey protein hydrolysates after transglutaminase cross-linking. <i>LWT - Food Science and Technology</i> , 2019 , 113, 108291	5.4	8
670	Tandem Mass Tag Proteomic Analysis of and Models of Cutaneous Leishmaniasis Reveals Parasite-Specific and Nonspecific Modulation of Proteins in the Host. <i>ACS Infectious Diseases</i> , 2019 , 5, 2136-2147	5.5	5
669	Amazon climatic factors driving terpene composition of Iryanthera polyneura Ducke in terra-firme forest: A statistical approach. <i>PLoS ONE</i> , 2019 , 14, e0224406	3.7	1
668	Applicability of MALDI-TOF MS for determination of quinolone residues in fish. <i>Journal of Mass Spectrometry</i> , 2019 , 54, 1008-1012	2.2	2
667	ETHANOLIC AND HYDROALCOHOLIC EXTRACTS OF PITANGA LEAVES (Eugenia uniflora L.) AND THEIR FRACTIONATION BY SUPERCRITICAL TECHNOLOGY. <i>Brazilian Journal of Chemical Engineering</i> , 2019 , 36, 1041-1051	1.7	6
666	Absence of the Caspases 1/11 Modulates Liver Global Lipid Profile and Gut Microbiota in High-Fat-Diet-Induced Obese Mice. <i>Frontiers in Immunology</i> , 2019 , 10, 2926	8.4	6
665	The impacts of the raising regime of Salmon species on their triacylglycerol composition revealed by easy ambient sonic-spray ionization mass spectrometry. <i>Food Research International</i> , 2019 , 120, 19-2	5 ⁷	11
664	Immune Response Resetting in Ongoing Sepsis. <i>Journal of Immunology</i> , 2019 , 203, 1298-1312	5.3	15
663	Biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. <i>Biomass Conversion and Biorefinery</i> , 2019 , 11, 1675	2.3	15
662	Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. <i>Ultrasonics Sonochemistry</i> , 2019 , 50, 82-95	8.9	39
661	Direct-infusion electrospray ionization-mass spectrometry analysis reveals atractyligenin derivatives as potential markers for green coffee postharvest discrimination. <i>LWT - Food Science and Technology</i> , 2019 , 103, 205-211	5.4	5
660	Lipidomic profile as a noninvasive tool to predict endometrial receptivity. <i>Molecular Reproduction and Development</i> , 2019 , 86, 145-155	2.6	5
659	Reactions Involved in Phenolics Degradation from Sugarcane Juice Treated by Ozone. <i>Ozone:</i> Science and Engineering, 2019 , 41, 369-375	2.4	4

658	Chemical Composition and Antioxidant Activity of Monguba (Pachira aquatica) Seeds. <i>Food Research International</i> , 2019 , 121, 880-887	7	15
657	An EM-type approach for classification of bivariate MALDI-MS data and identification of high fertility markers. <i>Environmetrics</i> , 2019 , 30, e2544	1.3	1
656	Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica. <i>Antonie Van Leeuwenhoek</i> , 2019 , 112, 479-490	2.1	6
655	A comprehensive characterization of Solanum lycocarpum St. Hill and Solanum oocarpum Sendtn: Chemical composition and antioxidant properties. <i>Food Research International</i> , 2019 , 124, 61-69	7	15
654	Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. <i>Reproduction, Fertility and Development</i> , 2019 , 31, 462-472	1.8	12
653	Standard methods for Apis mellifera propolis research. <i>Journal of Apicultural Research</i> , 2019 , 58, 1-49	2	105
652	Statistical mixture design investigation for extraction and quantitation of aporphine alkaloids from the leaves of Unonopsis duckei R.E. Fr. by HPLC-MS/MS. <i>Phytochemical Analysis</i> , 2018 , 29, 569-576	3.4	3
651	A potential formation route for CHOS compounds in dissolved organic matter. <i>Marine Chemistry</i> , 2018 , 202, 67-72	3.7	11
650	Lipidomic Profiling of Plasma and Erythrocytes From Septic Patients Reveals Potential Biomarker Candidates. <i>Biomarker Insights</i> , 2018 , 13, 1177271918765137	3.5	15
649	Unusual mechanisms in Claisen rearrangements: an ionic fragmentation leading to a -selective rearrangement. <i>Chemical Science</i> , 2018 , 9, 4124-4131	9.4	20
648	Petroleomics Orbitrap mass spectrometry with resolving power above 1 000 000 at / 200 <i>RSC Advances</i> , 2018 , 8, 6183-6191	3.7	44
647	Thiocarbonyl-bound metallonitrosyl complexes with visible-light induced DNA cleavage and promising vasodilation activity. <i>Journal of Inorganic Biochemistry</i> , 2018 , 182, 83-91	4.2	15
646	Comprehensive Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Precipitated under Different n-Alkanes Solvents. <i>Energy & Different Resonance Comprehensive Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Characterization of Asphaltenes Characterization of Asphaltenes by Fourier Transform Ion Cyclotron Resonance Characterization of Asphaltenes Characterization Characterization Characterization of Asphaltenes Characterization Cha</i>	8 ⁻⁴ 1046	8
645	Can an Alcohol Act As an Acid/Base Catalyst in Water Solution? An Experimental and Theoretical Study of Imidazole Catalysis of the Aqueous MoritaBaylisHillman Reaction. <i>ACS Catalysis</i> , 2018 , 8, 1703-	-17714	9
644	Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. <i>Food Chemistry</i> , 2018 , 245, 738-749	8.5	74
643	Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit. <i>Food Research International</i> , 2018 , 108, 264-273	7	30
642	Grape skin extract mitigates tissue degeneration, genotoxicity, and oxidative status in multiple organs of rats exposed to cadmium. <i>European Journal of Cancer Prevention</i> , 2018 , 27, 70-81	2	7
641	Development and validation of a sensitive LCMS/MS method to analyze NBOMes in dried blood spots: evaluation of long-term stability. <i>Forensic Toxicology</i> , 2018 , 36, 113-121	2.6	9

(2018-2018)

640	Mass spectrometry characterization of endophytic bacterium Curtobacterium sp. strain ER1/6 isolated from Citrus sinensis. <i>Journal of Mass Spectrometry</i> , 2018 , 53, 91-97	2.2	1
639	Rapid identification of bovine mastitis pathogens by MALDI-TOF Mass Spectrometry. <i>Pesquisa Veterinaria Brasileira</i> , 2018 , 38, 586-594	0.4	8
638	Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Species. <i>Molecules</i> , 2018 , 23,	4.8	8
637	Linalool enantiomeric distribution in rosewood-reminiscent populations in Central Amazon. <i>Journal of Essential Oil Research</i> , 2018 , 30, 464-469	2.3	6
636	Molecular Signatures of High-Grade Cervical Lesions. <i>Frontiers in Oncology</i> , 2018 , 8, 99	5.3	7
635	Long-term stability of synthetic cathinones in dried blood spots and whole blood samples: a comparative study. <i>Forensic Toxicology</i> , 2018 , 36, 424-434	2.6	8
634	Vaginal lipidomics of women with vulvovaginal candidiasis and cytolytic vaginosis: A non-targeted LC-MS pilot study. <i>PLoS ONE</i> , 2018 , 13, e0202401	3.7	6
633	Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. <i>International Dairy Journal</i> , 2018 , 87, 75-83	3.5	22
632	Study of Naphthenic Acidity and Corrosivity of Brazilian Crude Oils by ESI(-) FT-ICR MS. <i>Revista Virtual De Quimica</i> , 2018 , 10, 625-640	1.3	2
631	Influence of spermatozoal lipidomic profile on the cryoresistance of frozen spermatozoa from stallions. <i>Theriogenology</i> , 2018 , 108, 161-166	2.8	8
630	Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 1179-1190	5.7	9
629	Ayahuasca and Kambo intoxication after alternative natural therapy for depression, confirmed by mass spectrometry. <i>Forensic Toxicology</i> , 2018 , 36, 212-221	2.6	7
628	Gas Chromatography Coupled to High Resolution Time-of-Flight Mass Spectrometry as a High-Throughput Tool for Characterizing Geochemical Biomarkers in Sediments. <i>International Journal of Analytical Chemistry</i> , 2018 , 2018, 2560498	1.4	1
627	Vinyl-1,2,4-oxadiazoles Behave as Nucleophilic Partners in Morita-Baylis-Hillman Reactions. <i>Journal of Organic Chemistry</i> , 2018 , 83, 15118-15127	4.2	6
626	Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. <i>Energies</i> , 2018 , 11, 2766	3.1	12
625	Metabolomics of Infected with Leads to Early Detection of Late Blight in Asymptomatic Plants. <i>Molecules</i> , 2018 , 23,	4.8	22
624	Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes. <i>Energies</i> , 2018 , 11, 2767	3.1	16
623	Is the formation of N-heterocyclic carbenes (NHCs) a feasible mechanism for the distillation of imidazolium ionic liquids?. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 24716-24725	3.6	4

622	Multicenter Study Using Desorption-Electrospray-Ionization-Mass-Spectrometry Imaging for Breast-Cancer Diagnosis. <i>Analytical Chemistry</i> , 2018 , 90, 11324-11332	7.8	47
621	Treatment with cyclic adenosine monophosphate modulators prior to in vitro maturation alters the lipid composition and transcript profile of bovine cumulus-oocyte complexes and blastocysts. <i>Reproduction, Fertility and Development</i> , 2018 , 30, 1314-1328	1.8	10
620	Venturi Electrospray Ionization: Principles and Applications. <i>International Journal of Mass Spectrometry</i> , 2018 , 431, 50-55	1.9	2
619	Membrane lipid profile of in vitro-produced embryos is affected by vitrification but not by long-term dietary supplementation of polyunsaturated fatty acids for oocyte donor beef heifers. <i>Reproduction, Fertility and Development</i> , 2017 , 29, 1217-1230	1.8	3
618	Advanced Aspects of Crude Oils Correlating Data of Classical Biomarkers and Mass Spectrometry Petroleomics. <i>Energy & Data</i> , 31, 1208-1217	4.1	5
617	Criegee mechanism as a safe pathway of color reduction in sugarcane juice by ozonation. <i>Food Chemistry</i> , 2017 , 225, 181-187	8.5	16
616	Lipid mapping by desorption electrospray ionization mass spectrometry in a murine breast DMBA carcinogenesis model. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 86-91	1.9	6
615	Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. Journal of Dairy Science, 2017 , 100, 2928-2934	4	22
614	A Survey of the Peptide Profile in Prato Cheese as Measured by MALDI-MS and Capillary Electrophoresis. <i>Journal of Food Science</i> , 2017 , 82, 386-393	3.4	12
613	Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 901-907	3.5	25
612	Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum. <i>Analytical Chemistry</i> , 2017 , 89, 3460-3467	7.8	42
611	Antispasmodic activity from Serjania caracasana fractions and their safety. <i>Revista Brasileira De Farmacognosia</i> , 2017 , 27, 346-352	2	4
610	Celebrating 10 years of easy ambient sonic-spray ionization. <i>TrAC - Trends in Analytical Chemistry</i> , 2017 , 90, 135-141	14.6	24
609	Revisiting the Intermolecular Fujiwara Hydroarylation of Alkynes. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 1794-1803	3.2	12
608	Lipid profiles of follicular fluid from cows submitted to ovarian superstimulation. <i>Theriogenology</i> , 2017 , 94, 64-70	2.8	9
607	Charge-tagged N-heterocyclic carbenes (NHC): Direct transfer from ionic liquid solutions and long-lived nature in the gas phase. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 102	:1 ³ 1529	, 3
606	Direct Detection of Triacetone Triperoxide (TATP) in Real Banknotes from ATM Explosion by EASI-MS. <i>Propellants, Explosives, Pyrotechnics</i> , 2017 , 42, 370-375	1.7	9
605	Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niter[] Brazil: Particle size distribution, sources and cancer risk assessment. <i>Science of the Total Environment</i> , 2017 , 599-600, 305-313	10.2	68

(2017-2017)

604	Easy ambient sonic-spray ionization mass spectrometry for tissue imaging. <i>Analytical Methods</i> , 2017 , 9, 5029-5036	3.2	17
603	Volatile composition and physicochemical characteristics of mussel (Perna perna) protein hydrolysate microencapsulated with maltodextrin and n-OSA modified starch. <i>Food and Bioproducts Processing</i> , 2017 , 105, 12-25	4.9	13
602	Assessing Biodegradation of Brazilian Crude Oils via Characteristic Profiles of O1 and O2 Compound Classes: Petroleomics by Negative-Ion Mode Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Camp; Fuels</i> , 2017 , 31, 6649-6657	4.1	25
601	Tissue depletion study of enrofloxacin and its metabolite ciprofloxacin in broiler chickens after oral administration of a new veterinary pharmaceutical formulation containing enrofloxacin. <i>Food and Chemical Toxicology</i> , 2017 , 105, 8-13	4.7	9
600	Effect of soybean phosphatidylcholine on lipid profile of bovine oocytes matured in vitro. <i>Chemistry and Physics of Lipids</i> , 2017 , 204, 76-84	3.7	4
599	Short communication: Identification of Corynebacterium bovis by MALDI-mass spectrometry. Journal of Dairy Science, 2017 , 100, 4287-4289	4	3
598	MALDI mass spectrometry reveals that cumulus cells modulate the lipid profile of in vitro-matured bovine oocytes. <i>Systems Biology in Reproductive Medicine</i> , 2017 , 63, 86-99	2.9	9
597	18-Crown-6 spiking in direct infusion ESIMS analysis of complex mixtures: D ne ion per analytell relationship facilitating ion assignments and eliminating isobaric interferences. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 37-40	1.9	4
596	Two-point normalization using internal and external standards for a traceable determination of ¶3C values of fatty acid methyl esters by gas chromatography/combustion/isotope ratio mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 41-50	1.9	1
595	Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 1765	- 11/1 7	6
594	Hole-catalyzed Lycloadditions of the gaseous ionized nitrile N-oxides Ph-C N+O and CH3C N+O with model dipolar ophiles. <i>International Journal of Mass Spectrometry</i> , 2017 , 418, 24-29	1.9	
593	maturation impacts cumulus-oocyte complex metabolism and stress in cattle. <i>Reproduction</i> , 2017 , 154, 881-893	3.8	23
592	Lipid and protein fingerprinting for Fusarium oxysporum f. sp. cubense strain-level classification. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 6803-6812	4.4	
591	Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. <i>Dental Materials</i> , 2017 , 33, 1402-1415	5.7	14
590	Lipidomic alterations of in vitro macrophage infection by L. infantum and L. amazonensis. <i>Molecular BioSystems</i> , 2017 , 13, 2401-2406		8
589	Plasma Lipidomic Signature of Rectal Adenocarcinoma Reveals Potential Biomarkers. <i>Frontiers in Oncology</i> , 2017 , 7, 325	5.3	15
588	Reduction of 25% salt in Prato cheese does not affect proteolysis and sensory acceptance. <i>International Dairy Journal</i> , 2017 , 75, 101-110	3.5	22
587	Triacsin C reduces lipid droplet formation and induces mitochondrial biogenesis in primary rat hepatocytes. <i>Journal of Bioenergetics and Biomembranes</i> , 2017 , 49, 399-411	3.7	12

586	Transferring Ions from Solution to the Gas Phase: The Two Basic Principles. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 2255-2261	3.5	13
585	Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 2665-2676	3.5	31
584	Proteomic approaches for drug discovery against tegumentary leishmaniasis. <i>Biomedicine and Pharmacotherapy</i> , 2017 , 95, 577-582	7.5	7
583	MALDI MS imaging investigation of the host response to visceral leishmaniasis. <i>Molecular BioSystems</i> , 2017 , 13, 1946-1953		8
582	On the solvent and counter ion-free mechanism of ketalization reactions of gaseous activated carbonyls. <i>International Journal of Mass Spectrometry</i> , 2017 , 421, 170-177	1.9	1
581	EASI-IMS an expedite and secure technique to screen for 25I-NBOH in blotter papers. <i>Journal of Mass Spectrometry</i> , 2017 , 52, 701-706	2.2	17
580	Sugarcane cells as origin of acid beverage floc in cane sugar. Food Chemistry, 2017, 237, 1004-1011	8.5	2
579	Desorption electrospray ionization mass spectrometry imaging reveals chemical defense of Burkholderia seminalis against cacao pathogens. <i>RSC Advances</i> , 2017 , 7, 29953-29958	3.7	12
578	Dataset on lipid profile of bovine oocytes exposed to L\(\textit{H}\)-phosphatidylcholine during in vitro maturation investigated by MALDI mass spectrometry and gas chromatography-flame ionization detection. <i>Data in Brief</i> , 2017 , 13, 480-486	1.2	2
577	Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging. <i>Molecular BioSystems</i> , 2017 , 13, 2036-2043		7
576	Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2017 , 1863, 121-128	6.9	36
575	Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. <i>Journal of Physiology</i> , 2017 , 595, 677-693	3.9	33
574	Purple carrot extract protects against cadmium intoxication in multiple organs of rats: Genotoxicity, oxidative stress and tissue morphology analyses. <i>Journal of Trace Elements in Medicine and Biology</i> , 2016 , 33, 37-47	4.1	24
573	Characterization of binary and ternary mixtures of green, white and black tea extracts by electrospray ionization mass spectrometry and modeling of their in vitro antibacterial activity. <i>LWT - Food Science and Technology</i> , 2016 , 65, 414-420	5.4	18
572	Forensic Application of X-ray Fluorescence Spectroscopy for the Discrimination of Authentic and Counterfeit Revenue Stamps. <i>Applied Spectroscopy</i> , 2016 , 70, 1910-1915	3.1	7
571	Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry. <i>Organic Geochemistry</i> , 2016 , 101, 99-107	3.1	27
57°	Mechanistic Options for the Morita B aylis⊞illman Reaction (n?- 咨) 2016 , 191-232		2
569	Assessing Relative Electrospray Ionization, Atmospheric Pressure Photoionization, Atmospheric Pressure Chemical Ionization, and Atmospheric Pressure Photo- and Chemical Ionization Efficiencies in Mass Spectrometry Petroleomic Analysis via Pools and Pairs of Selected Polar	4.1	9

(2016-2016)

568	Protein expression in human cumulus cells as an indicator of blastocyst formation and pregnancy success. <i>Journal of Assisted Reproduction and Genetics</i> , 2016 , 33, 1571-1583	3.4	10
567	Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles. <i>Journal of Organic Chemistry</i> , 2016 , 81, 6626-39	4.2	17
566	Phospholipid Profile and Distribution in the Receptive Oviduct and Uterus During Early Diestrus in Cattle. <i>Biology of Reproduction</i> , 2016 , 95, 127	3.9	16
565	Eugenia aurata and Eugenia punicifolia HBK inhibit inflammatory response by reducing neutrophil adhesion, degranulation and NET release. <i>BMC Complementary and Alternative Medicine</i> , 2016 , 16, 403	4.7	14
564	Sequential high pressure extractions applied to recover piceatannol and scirpusin B from passion fruit bagasse. <i>Food Research International</i> , 2016 , 85, 51-58	7	50
563	Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry. <i>Food Chemistry</i> , 2016 , 211, 661-8	8.5	37
562	Simultaneous detection of lysine metabolites by a single LC-MS/MS method: monitoring lysine degradation in mouse plasma. <i>SpringerPlus</i> , 2016 , 5, 172		15
561	Food quality and authenticity screening via easy ambient sonic-spray ionization mass spectrometry. <i>Analyst, The</i> , 2016 , 141, 1172-84	5	25
560	Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage?. <i>Analytical Chemistry</i> , 2016 , 88, 2515-26	7.8	66
559	Mass spectrometry screening of Arabica coffee roasting: A non-target and non-volatile approach by EASI-MS and ESI-MS. <i>Food Research International</i> , 2016 , 89, 967-975	7	27
558	Lipidome signatures in early bovine embryo development. <i>Theriogenology</i> , 2016 , 86, 472-484.e1	2.8	37
557	Phenolic and aroma compositions of pitomba fruit (Talisia esculenta Radlk.) assessed by LCMS/MS and HS-SPME/GCMS. <i>Food Research International</i> , 2016 , 83, 87-94	7	25
556	Sucrose and color profiles in sugarcane (Saccharum sp.) juice analyzed by UFLC-ELSD and Synapt High-Definition Mass Spectrometry during radiation treatment. <i>Radiation Physics and Chemistry</i> , 2016 , 121, 99-105	2.5	3
555	Charge Tags for Most Comprehensive ESI-MS Monitoring of Morita-Baylis-Hillman (MBH)/aza-MBH Reactions: Solid Mechanistic View and the Dualistic Role of the Charge Tagged Acrylate. <i>Journal of Organic Chemistry</i> , 2016 , 81, 1089-98	4.2	11
554	Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itaja BAD, Brazil). <i>Science of the Total Environment</i> , 2016 , 544, 432-8	10.2	25
553	Using the L/O ratio to determine blend composition in biodiesel by EASI-MS corroborated by GC-FID and GC-MS. <i>Analytical Methods</i> , 2016 , 8, 682-687	3.2	2
552	Fatty acid biomarkers in sediment samples via ultra-high resolution and accuracy time-of-flight mass spectrometry. <i>Organic Geochemistry</i> , 2016 , 92, 24-31	3.1	3
551	Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts. <i>Analyst, The</i> , 2016 , 141, 2767-73	5	21

550	Pioneering ambient mass spectrometry imaging in psychiatry: Potential for new insights into schizophrenia. <i>Schizophrenia Research</i> , 2016 , 177, 67-69	3.6	11
549	Mass spectrometry study of N-alkylbenzenesulfonamides with potential antagonist activity to potassium channels. <i>Amino Acids</i> , 2016 , 48, 445-59	3.5	3
548	Anti-theft device staining on banknotes detected by mass spectrometry imaging. <i>Forensic Science International</i> , 2016 , 260, 22-26	2.6	11
547	Analyzing Brazilian Driver License Authenticity by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2016 , 07, 342-350	0.7	4
546	Non-invasive prediction of blastocyst implantation, ongoing pregnancy and live birth, by mass spectrometry lipid fingerprinting. <i>Jornal Brasileiro De Reproducao Assistida</i> , 2016 , 20, 227-231	1.7	1
545	Genome Mining of EndophyticStreptomyces wadayamensisReveals High Antibiotic Production Capability. <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	2
544	Quantification of Sterol and Triterpenol Biomarkers in Sediments of the Cananîa-Iguape Estuarine-Lagoonal System (Brazil) by UHPLC-MS/MS. <i>International Journal of Analytical Chemistry</i> , 2016 , 2016, 8361375	1.4	9
543	Fragmentation Reactions of Rhodamine B and 6G as Revealed by High Accuracy Orbitrap Tandem Mass Spectrometry. <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	3
542	Validaß de um mtodo analtico rpido por CLAE-UV para determinaß de cumarina em guaco (Mikania glomerata Sprengel) confirmado com espectrometria de massas. <i>Revista Brasileira De Plantas Medicinais</i> , 2016 , 18, 316-325		2
541	Liquid Chromatography-Tandem Mass Spectrometry Determination of p-Chloroaniline in Gel and Aqueous Chlorhexidine Products Used in Dentistry. <i>Chromatographia</i> , 2016 , 79, 841-849	2.1	4
540	Catiomers and aniomers: unique classes of isomeric ions. <i>Rapid Communications in Mass Spectrometry</i> , 2016 , 30, 1249-1252	2.2	2
539	Variations in the Abundance of Lipid Biomarker Ions in Mass Spectrometry Images Correlate to Tissue Density. <i>Analytical Chemistry</i> , 2016 , 88, 12099-12107	7.8	11
538	A reformulated aromaticity index equation under consideration for non-aromatic and non-condensed aromatic cyclic carbonyl compounds. <i>Organic Geochemistry</i> , 2016 , 95, 29-33	3.1	12
537	Phytochemical Analysis and Antifungal Activity of Extracts from Leaves and Fruit Residues of Brazilian Savanna Plants Aiming Its Use as Safe Fungicides. <i>Natural Products and Bioprospecting</i> , 2016 , 6, 195-204	4.9	22
536	Sacha inchi (Plukenetia volubilis L.) oil composition varies with changes in temperature and pressure in subcritical extraction with n-propane. <i>Industrial Crops and Products</i> , 2016 , 87, 64-70	5.9	30
535	Immediate differentiation of unusual seed oils by easy ambient sonic-spray ionization mass spectrometry and chemometric analysis. <i>Analytical Methods</i> , 2016 , 8, 3681-3690	3.2	8
534	Lipid profiles of canine spermatozoa as revealed via matrix-assisted laser desorption/ionization mass spectrometry. <i>Reproduction in Domestic Animals</i> , 2016 , 51, 1055-1058	1.6	1
533	Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS). <i>Journal of the American Society for Mass Spectrometry</i> , 2016 , 27, 1944-1951	3.5	32

532	Jabuticaba (Myrciaria cauliflora) Seeds: Chemical Characterization and Extraction of Antioxidant and Antimicrobial Compounds. <i>Journal of Food Science</i> , 2016 , 81, C2206-17	3.4	25	
531	Profiles of phenolic compounds by FT-ICR MS and antioxidative and antiproliferative activities of Stryphnodendron obovatum Benth leaf extracts. <i>Analytical Methods</i> , 2016 , 8, 6056-6063	3.2	10	
530	A dopant for improved sensitivity in easy ambient sonic-spray ionization mass spectrometry. Journal of Mass Spectrometry, 2016 , 51, 53-61	2.2	15	
529	Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. <i>Food Chemistry</i> , 2015 , 180, 280-287	8.5	89	
528	Improved embryonic cryosurvival observed after in vitro supplementation with conjugated linoleic acid is related to changes in the membrane lipid profile. <i>Theriogenology</i> , 2015 , 84, 127-36	2.8	19	
527	Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2015 , 55, 285-90	2	10	
526	Determination of Geochemically Important Sterols and Triterpenols in Sediments Using Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). <i>Analytical Chemistry</i> , 2015 , 87, 7771-8	7.8	21	
525	Comprehensive Characterization of Second-Generation Biofuel from Invasive Freshwater Plants by FT-ICR MS. <i>Bioenergy Research</i> , 2015 , 8, 1938-1945	3.1	13	
524	A Screening Method to Evaluate Soybean Oil-Based Biodiesel Oxidative Quality During Its Shelf Life. <i>JAOCS, Journal of the American Oil ChemistshSociety</i> , 2015 , 92, 967-974	1.8	5	
523	Direct Protocol for Ambient Mass Spectrometry Imaging on Agar Culture. <i>Analytical Chemistry</i> , 2015 , 87, 6925-30	7.8	37	
522	Subcritical extraction of flaxseed oil with n-propane: Composition and purity. <i>Food Chemistry</i> , 2015 , 188, 452-8	8.5	61	
521	Are Benzoic Acids Always More Acidic Than Phenols? The Case of ortho-, meta-, and para-Hydroxybenzoic Acids. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 2189-2196	3.2	14	
520	Chemical Characterization of Jatropha curcas L. Seed Oil and Its Biodiesel by Ambient Desorption/Ionization Mass Spectrometry. <i>Energy & Desorption</i> , 29, 3096-3103	4.1	7	
519	Antioxidant activity, phenolics and UPLCESI(IMS of extracts from different tropical fruits parts and processed peels. <i>Food Research International</i> , 2015 , 77, 392-399	7	100	
518	Wood chemotaxonomy via ESI-MS profiles of phytochemical markers: the challenging case of African versus Brazilian mahogany woods. <i>Analytical Methods</i> , 2015 , 7, 8576-8583	3.2	6	
517	Lipidomics analysis of follicular fluid by ESI-MS reveals potential biomarkers for ovarian endometriosis. <i>Journal of Assisted Reproduction and Genetics</i> , 2015 , 32, 1817-25	3.4	44	
516	Synthesis of 2-arylbenzimidazoles under mild conditions catalyzed by a heteropolyacid-containing task-specific ionic liquid and catalyst investigation by electrospray (tandem) mass spectrometry. <i>RSC Advances</i> , 2015 , 5, 69418-69422	3.7	17	
515	Insights on the Petasis BoronoMannich multicomponent reaction mechanism. <i>RSC Advances</i> , 2015 , 5, 76337-76341	3.7	16	

514	MoritaBaylis⊞illman adducts as building blocks of heterocycles: a simple approach to 4-substituted pyrazolones, and mechanism investigation via ESIMS(/MS). <i>Monatshefte F□ Chemie</i> , 2015 , 146, 1557-1570	1.4	5
513	Petroleomics by ion mobility mass spectrometry: resolution and characterization of contaminants and additives in crude oils and petrofuels. <i>Analytical Methods</i> , 2015 , 7, 4450-4463	3.2	31
512	Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. <i>Analytical Methods</i> , 2015 , 7, 53-62	3.2	35
511	Proteomic analysis of Chromobacterium violaceum and its adaptability to stress. <i>BMC Microbiology</i> , 2015 , 15, 272	4.5	6
510	The influence of different referencing methods on the accuracy of (113) C value measurement of ethanol fuel by gas chromatography/combustion/isotope ratio mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 1938-46	2.2	4
509	Elucidation of Color Reduction Involving Precipitation of Non-Sugars in Sugarcane (Saccharum sp.) Juice by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Journal of Food Processing and Preservation</i> , 2015 , 39, 1826-1831	2.1	11
508	Separation of glycosidic catiomers by TWIM-MS using CO2 as a drift gas. <i>Journal of Mass Spectrometry</i> , 2015 , 50, 336-43	2.2	18
507	Primary Structure of a Trypsin Inhibitor (Copaifera langsdorffii Trypsin Inhibitor-1) Obtained from C. langsdorffii Seeds. <i>Journal of Biomolecular Techniques</i> , 2015 , 26, 90-102	1.1	2
506	LC-MS characterization of valsartan degradation products and comparison with LC-PDA. <i>Brazilian Journal of Pharmaceutical Sciences</i> , 2015 , 51, 839-845	1.8	3
505	Adsorption in a Fixed-Bed Column and Stability of the Antibiotic Oxytetracycline Supported on Zn(II)-[2-Methylimidazolate] Frameworks in Aqueous Media. <i>PLoS ONE</i> , 2015 , 10, e0128436	3.7	25
504	The carbon isotopic (13C/12C) signature of sugarcane bioethanol: certifying the major source of renewable fuel from Brazil. <i>Analytical Methods</i> , 2015 , 7, 4780-4785	3.2	8
503	Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos. <i>Zygote</i> , 2015 , 23, 732-41	1.6	20
502	Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi. <i>Analytical Chemistry</i> , 2015 , 87, 12298-	3 0 8	34
501	Phytotoxicity and Identification of Secondary Metabolites of Sapindus saponaria L. Leaf Extract. Journal of Plant Growth Regulation, 2015 , 34, 339-349	4.7	7
500	Characterization of ANFO explosive by high accuracy ESI(–́)-FTMS with forensic identification on real samples by EASI(-)-MS. <i>Forensic Science International</i> , 2015 , 249, 156-64	2.6	19
499	Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS. <i>PLoS ONE</i> , 2015 , 10, e0126585	3.7	7
498	Characterization of Royal Jelly by Electrospray Ionization Mass Spectrometry Fingerprinting. <i>Mass Spectrometry & Purification Techniques</i> , 2015 , 01,		3
497	Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). <i>LWT - Food Science and Technology</i> , 2014 , 59, 1304-1310	5.4	138

496	Bristed acid catalyzed azlactone ring opening by nucleophiles. <i>Tetrahedron</i> , 2014 , 70, 3271-3275	2.4	22
495	Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS). <i>Tetrahedron</i> , 2014 , 70, 3306-3313	2.4	63
494	Desorption/ionization efficiencies of triacylglycerols and phospholipids via EASI-MS. <i>Journal of Mass Spectrometry</i> , 2014 , 49, 335-41	2.2	7
493	Waxy Crude Oil Emulsion Gel: Chemical Characterization of Emulsified Phase Extract Components. <i>Energy & Energy & Energy</i>	4.1	14
492	Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). <i>Chemical Communications</i> , 2014 , 50, 338-40	5.8	59
491	High throughput MS techniques for caviar lipidomics. <i>Analytical Methods</i> , 2014 , 6, 2436	3.2	24
490	Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. <i>Food Research International</i> , 2014 , 66, 396-400	7	47
489	Phosphine-free Heck reaction: mechanistic insights and catalysis B n water L using a charge-tagged palladium complex. <i>New Journal of Chemistry</i> , 2014 , 38, 2958	3.6	19
488	Chemo-, regio- and stereoselective Heck arylation of allylated malonates: mechanistic insights by ESI-MS and synthetic application toward 5-arylmethyl-Elactones. <i>Organic Letters</i> , 2014 , 16, 5180-3	6.2	17
487	Structural Organization and Supramolecular Interactions of the Task-Specific Ionic Liquid 1-Methyl-3-carboxymethylimidazolium Chloride: Solid, Solution, and Gas Phase Structures. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17878-17889	3.8	16
486	Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques. <i>Food Research International</i> , 2014 , 64, 472-481	7	35
485	Effects of cadmium and copper biosorption on Chlorella vulgaris. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 93, 405-9	2.7	10
484	Imidate-based cross-linkers for structural proteomics: increased charge of protein and peptide ions and CID and ECD fragmentation studies. <i>Journal of the American Society for Mass Spectrometry</i> , 2014 , 25, 1181-91	3.5	8
483	The multicomponent Hantzsch reaction: comprehensive mass spectrometry monitoring using charge-tagged reagents. <i>Chemistry - A European Journal</i> , 2014 , 20, 12808-16	4.8	38
482	Identification of Corynebacterium spp. isolated from bovine intramammary infections by matrix-assisted laser desorption ionization-time of flight mass spectrometry. <i>Veterinary Microbiology</i> , 2014 , 173, 147-51	3.3	26
481	Ambient sonic-spray ionization mass spectrometry for rapid monitoring of secondary oxidation products in biodiesel. <i>European Journal of Lipid Science and Technology</i> , 2014 , 116, 952-960	3	11
480	Artificially-aged cachaʿa samples characterised by direct infusion electrospray ionisation mass spectrometry. <i>Food Chemistry</i> , 2014 , 143, 77-81	8.5	10
479	Morita-Baylis-Hillman reaction: ESI-MS(/MS) investigation with charge tags and ionic liquid effect origin revealed by DFT calculations. <i>Journal of Organic Chemistry</i> , 2014 , 79, 5239-48	4.2	40

478	Antiproliferative, antimutagenic and antioxidant activities of a Brazilian tropical fruit juice. <i>LWT - Food Science and Technology</i> , 2014 , 59, 1319-1324	5.4	17
477	A comparison between characterization and biological properties of Brazilian fresh and aged propolis. <i>BioMed Research International</i> , 2014 , 2014, 257617	3	28
476	Integrative Approach Using GC-MS and Easy Ambient Sonic-Spray Ionization Mass Spectrometry (EASI-MS) for Comprehensive Lipid Characterization of Buriti (Mauritia flexuosa) Oil. <i>Journal of the Brazilian Chemical Society</i> , 2014 ,	1.5	1
475	Production and characterization of surface-active compounds from Gordonia amicalis. <i>Brazilian Archives of Biology and Technology</i> , 2014 , 57, 138-144	1.8	9
474	Identification of coagulase-negative staphylococci from bovine intramammary infection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. <i>Journal of Clinical Microbiology</i> , 2014 , 52, 1658-63	9.7	38
473	Effect of extraction solvent on antiradical activity of the obtained propolis extracts. <i>Journal of Apicultural Research</i> , 2014 , 53, 91-100	2	8
472	Direct and non-destructive proof of authenticity for the 2nd generation of Brazilian real banknotes via easy ambient sonic spray ionization mass spectrometry. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2014 , 54, 459-64	2	16
471	Phytochemical markers of different types of red propolis. <i>Food Chemistry</i> , 2014 , 146, 174-80	8.5	91
470	Unsaturation levels in biodiesel via easy ambient sonic-spray ionization mass spectrometry. <i>Fuel</i> , 2014 , 128, 99-103	7.1	15
469	Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization. <i>PLoS ONE</i> , 2014 , 9, e103566	3.7	4
468	Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization. <i>Tenside, Surfactants, Detergents</i> , 2014 , 51, 397-405	1	9
467	Structure-drift time relationships in ion mobility mass spectrometry. <i>International Journal for Ion Mobility Spectrometry</i> , 2013 , 16, 117-132	1.5	22
466	Shvo's catalyst in chemoenzymatic dynamic kinetic resolution of amines - inner or outer sphere mechanism?. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 6695-8	3.9	9
465	Optimal single-embryo mass spectrometry fingerprinting. <i>Journal of Mass Spectrometry</i> , 2013 , 48, 844-9	9 2.2	30
464	Antifungal Bioassay-Guided Fractionation of an Oil Extract of Propolis. <i>Journal of Food Quality</i> , 2013 , 36, 291-301	2.7	9
463	Evaluation of the fatty matter contained in microcapsules obtained by double emulsification and subsequent enzymatic gelation method. <i>Food Research International</i> , 2013 , 54, 432-438	7	7
462	Microorganisms in cryopreserved semen and culture media used in the in vitro production (IVP) of bovine embryos identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). <i>Theriogenology</i> , 2013 , 80, 337-45	2.8	15
461	Evaluation of conjugated fatty acids incorporation in tilapia through GCEID and EASIMS. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, n/a-n/a	3	6

(2013-2013)

460	Biodiesel Oxidation Monitored by Ambient Desorption/Ionization Mass Spectrometry. <i>Energy & Energy Fuels</i> , 2013 , 27, 7455-7459	4.1	9
459	Petroleomics by Traveling Wave Ion Mobility Mass Spectrometry Using CO2 as a Drift Gas. <i>Energy & Energy Fuels</i> , 2013 , 27, 7277-7286	4.1	45
458	Precision in Petroleomics via Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & E</i>	4.1	17
457	Comprehensive analysis of Ginkgo tablets by easy ambient sonic spray ionization mass spectrometry. <i>Canadian Journal of Chemistry</i> , 2013 , 91, 671-678	0.9	6
456	Typification and quality control of the Andiroba (Carapa guianensis) oil via mass spectrometry fingerprinting. <i>Analytical Methods</i> , 2013 , 5, 1385	3.2	31
455	Assessing melatonin and its oxidative metabolites amounts in biological fluid and culture medium by liquid chromatography electrospray ionization tandem mass spectrometry (LCESI-MS/MS). <i>Analytical Methods</i> , 2013 , 5, 6911	3.2	5
454	Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. <i>Human Fertility</i> , 2013 , 16, 269-77	1.9	24
453	Probing the formation of monoalkyl carbonates and pyrocarbonates in water with electrospray ionization mass spectrometry. <i>RSC Advances</i> , 2013 , 3, 18886	3.7	6
452	Bacterial identification: from the agar plate to the mass spectrometer. <i>RSC Advances</i> , 2013 , 3, 994-1008	3.7	46
451	Mass spectrometry made easy: the quest for simplicity. <i>Drug Testing and Analysis</i> , 2013 , 5, 137-44	3.5	16
450	Whisky analysis by electrospray ionization-Fourier transform mass spectrometry. <i>Food Research International</i> , 2013 , 51, 98-106	7	45
449	"Dba-free" palladium intermediates of the Heck-Matsuda reaction. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 3277-81	3.9	23
448	Synthesis of 5-Organotellanyl-1H-1,2,3-trilazoles: Functionalization of the 5-Position Scaffold by the Sonogashira Cross-Coupling Reaction. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 3780-378	5 ^{3.2}	23
447	DHFR 19-bp deletion and SHMT C1420T polymorphisms and metabolite concentrations of the folate pathway in individuals with Down syndrome. <i>Genetic Testing and Molecular Biomarkers</i> , 2013 , 17, 274-7	1.6	7
446	Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations. <i>Dalton Transactions</i> , 2013 , 42, 11497-506	4.3	21
445	Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. <i>LWT - Food Science and Technology</i> , 2013 , 50, 496-502	5.4	38
444	Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). <i>Pure and Applied Chemistry</i> , 2013 , 85, 1515-1609	2.1	238
443	Assessing Biodegradation in the Llanos Orientales Crude Oils by Electrospray Ionization Ultrahigh Resolution and Accuracy Fourier Transform Mass Spectrometry and Chemometric Analysis. <i>Energy & Energy Ruels</i> , 2013 , 27, 1277-1284	4.1	45

442	Quantitation of triacylglycerols in vegetable oils and fats by easy ambient sonic-spray ionization mass spectrometry. <i>Analytical Methods</i> , 2013 , 5, 6969	3.2	18
441	Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. <i>Reproduction</i> , 2013 , 145, 453-62	3.8	40
440	Experimental NMR and MS study of benzoylguanidines. Investigation of E/Z isomerism. <i>Journal of Physical Organic Chemistry</i> , 2013 , 26, 315-321	2.1	3
439	Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. <i>Journal of Mass Spectrometry</i> , 2013 , 48, 989-97	2.2	61
438	Structure and Physico-Chemical Properties of Ionic Liquids: What Mass Spectrometry is Telling Us. <i>Current Organic Chemistry</i> , 2013 , 17, 257-272	1.7	15
437	Analyzing Brazilian vehicle documents for authenticity by easy ambient sonic-spray ionization mass spectrometry. <i>Journal of Forensic Sciences</i> , 2012 , 57, 539-43	1.8	22
436	Self-assembled hybrid films of phosphotungstic acid and aminoalkoxysilanes on SiO2/Si surfaces. <i>Thin Solid Films</i> , 2012 , 520, 3574-3580	2.2	12
435	Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: the case of the endangered Mahogany tree. <i>Journal of Mass Spectrometry</i> , 2012 , 47, 1-6	2.2	20
434	Polymorphism C1420T of Serine hydroxymethyltransferase gene on maternal risk for Down syndrome. <i>Molecular Biology Reports</i> , 2012 , 39, 2561-6	2.8	12
433	LSD and 9,10-dihydro-LSD analyses in street drug blotter samples via easy ambient sonic-spray ionization mass spectrometry (EASI-MS). <i>Journal of Forensic Sciences</i> , 2012 , 57, 1307-12	1.8	19
432	Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. <i>Food Research International</i> , 2012 , 49, 596-603	7	150
431	On the mechanism of the Dakin-West reaction. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 9013-20	3.9	10
430	Corrole isomers: intrinsic gas-phase shapes via traveling wave ion mobility mass spectrometry and dissociation chemistries via tandem mass spectrometry. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 8396-402	3.9	17
429	Brazil nut oil: quality control via triacylglycerol profiles provided by easy ambient sonic-spray ionization mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 11263-7	5.7	24
428	Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. <i>Biology of Reproduction</i> , 2012 , 87, 130	3.9	71
427	Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. <i>Journal of Mass Spectrometry</i> , 2012 , 47, 1643-7	2.2	58
426	Administration of a murine diet supplemented with conjugated linoleic acid increases the expression and activity of hepatic uncoupling proteins. <i>Journal of Bioenergetics and Biomembranes</i> , 2012 , 44, 587-96	3.7	7
425	Intact triacylglycerol profiles of fats and meats via thermal imprinting easy ambient sonic-spray ionization mass spectrometry. <i>Analytical Methods</i> , 2012 , 4, 3551	3.2	25

424	Exploring the coordination chemistry of isomerizable terpyridine derivatives for successful analyses of cis and trans isomers by travelling wave ion mobility mass spectrometry. <i>Analyst, The</i> , 2012 , 137, 404	5 ⁵ 51	19	
423	N-heterocyclic carbenes with negative-charge tags: direct sampling from ionic liquid solutions. <i>RSC Advances</i> , 2012 , 2, 3201	3.7	18	
422	Nanoassisted laser desorption-ionization-MS imaging of tumors. <i>Analytical Chemistry</i> , 2012 , 84, 6341-5	7.8	30	
421	Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. <i>Energy & amp; Fuels</i> , 2012 , 26, 5787-5794	4.1	51	
420	Quantitation and Quality Control of Biodiesel/Petrodiesel (Bn) Blends by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. <i>Energy & Energy & </i>	4.1	14	
419	Comprehensive Chemical Composition of Gas Oil Cuts Using Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry and Electrospray Ionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & Energy</i> 2012, 26, 5069-5079	4.1	27	
418	Free and Total Glycerin in Biodiesel: Accurate Quantitation by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. <i>Energy & Energy & 2012</i> , 26, 3042-3047	4.1	21	
417	Thermal behavior of malonylglucoside isoflavones in soybean flour analyzed by RPHPLC/DAD and eletrospray ionization mass spectrometry. <i>LWT - Food Science and Technology</i> , 2012 , 48, 114-119	5.4	22	
416	Direct characterization of commercial lecithins by easy ambient sonic-spray ionization mass spectrometry. <i>Food Chemistry</i> , 2012 , 135, 1855-60	8.5	21	
415	Comparative study of the effect of green and roasted water extracts of mate (llex paraguariensis) on glucosyltransferase activity of Streptococcus mutans. <i>Journal of Enzyme Inhibition and Medicinal Chemistry</i> , 2012 , 27, 232-40	5.6	5	
414	Gasoline, Kerosene, and Diesel Fingerprinting via Polar Markers. <i>Energy & Diesels</i> , 2012 , 26, 3542-354	14.1	38	
413	Vapors from Ionic Liquids: Reconciling Simulations with Mass Spectrometric Data. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3435-41	6.4	46	
412	Easy dual-mode ambient mass spectrometry with Venturi self-pumping, canned air, disposable parts and voltage-free sonic-spray ionization. <i>Analyst, The</i> , 2012 , 137, 2537-40	5	40	
411	Arabica and robusta coffees: identification of major polar compounds and quantification of blends by direct-infusion electrospray ionization-mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 4253-8	5.7	70	
410	Used Frying Oil: A Proper Feedstock for Biodiesel Production?. <i>Bioenergy Research</i> , 2012 , 5, 1002-1008	3.1	17	
409	Anticholinesterase activity evaluation of alkaloids and coumarin from stems of Conchocarpus fontanesianus. <i>Revista Brasileira De Farmacognosia</i> , 2012 , 22, 374-380	2	13	
408	Resolution of isomeric multi-ruthenated porphyrins by travelling wave ion mobility mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2012 , 26, 263-8	2.2	18	
407	Nonculture-based identification of bacteria in milk by protein fingerprinting. <i>Proteomics</i> , 2012 , 12, 2739)- <u>4</u> .8	25	

406	Protomers: formation, separation and characterization via travelling wave ion mobility mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2012 , 47, 712-9	2.2	83
405	Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. <i>Food Chemistry</i> , 2012 , 131, 692-697	8.5	44
404	Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS. <i>Food Chemistry</i> , 2012 , 131, 722-726	8.5	44
403	Exploring the intrinsic polar [4+2(+)] cycloaddition reactivity of gaseous carbosulfonium and carboxonium ions. <i>Journal of Mass Spectrometry</i> , 2012 , 47, 1526-35	2.2	1
402	Easy Ambient Sonic-Spray Ionization Mass Spectrometry: An Alternative Method to Quantify Organic Impurities in Biodiesel. <i>Journal of ASTM International</i> , 2012 , 9, 104552		2
401	Natural and artificial markers of gasoline detected by membrane introduction mass spectrometry. <i>Analytical Methods</i> , 2011 , 3, 751-754	3.2	6
400	Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 2277-83	5.7	96
399	Charge-tagged acetate ligands as mass spectrometry probes for metal complexes investigations: applications in Suzuki and Heck phosphine-free reactions. <i>Journal of Organic Chemistry</i> , 2011 , 76, 10140	- 4 .2	47
398	Charge-tagged N-heterocyclic carbenes. <i>RSC Advances</i> , 2011 , 1, 73	3.7	24
397	C-H functionalization of 1,4-naphthoquinone by oxidative coupling with anilines in the presence of a catalytic quantity of copper(II) acetate. <i>Journal of Organic Chemistry</i> , 2011 , 76, 5264-73	4.2	66
396	Venturi easy ambient sonic-spray ionization. <i>Analytical Chemistry</i> , 2011 , 83, 1375-80	7.8	114
395	Evaluation of dehydrated marolo (Annona crassiflora) flour and carpels by freeze-drying and convective hot-air drying. <i>Food Research International</i> , 2011 , 44, 2385-2390	7	18
394	Fast Analysis of Taurine in Energetic Drinks by Electrospray Ionization Mass Spectrometry. <i>Journal of the Brazilian Chemical Society</i> , 2011 , 22, 801-806	1.5	4
393	Monitoring of wine aging process by electrospray ionization mass spectrometry. <i>Food Science and Technology</i> , 2011 , 31, 730-734	2	10
392	Free Radical Scavenging Activity, Determination of Phenolic Compounds and HPLC-DAD/ESIMS Profile of Campomanesia Adamantium Leaves. <i>Natural Product Communications</i> , 2011 , 6, 1934578X1100	0690	
391	Monitoring of b lockers ozone degradation via electrospray ionization mass spectrometry. <i>Journal of the Brazilian Chemical Society</i> , 2011 , 22, 919-928	1.5	4
390	Qulmica forense: perspectivas sobre novos mtodos analíticos aplicados ^documentoscopia, balística e drogas de abuso. <i>Quimica Nova</i> , 2011 ,	1.6	2
389	Antioxidant activity and composition of propolis obtained by different methods of extraction. <i>Journal of the Brazilian Chemical Society</i> , 2011 , 22, 929-935	1.5	57

388	DBU as a catalyst for the synthesis of amides via aminolysis of methyl esters. <i>Journal of the Brazilian Chemical Society</i> , 2011 , 22, 2186-2190	1.5	15
387	Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. <i>Journal of Applied Microbiology</i> , 2011 , 110, 1177-86	4.7	79
386	Metabolic fingerprinting of royal jelly: characterization and proof of authenticity. <i>Quality Assurance and Safety of Crops and Foods</i> , 2011 , 3, 185-190	1.5	8
385	Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 222, 185-191	4.7	16
384	Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. <i>Process Biochemistry</i> , 2011 , 46, 1951	- 1 1957	123
383	Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium complexes as catalysts for the total deoxygenation of 1,2-hexanediol and glycerol. <i>Green Chemistry</i> , 2011 , 13, 357-366	10	32
382	Screening species of Pilocarpus (Rutaceae) as sources of pilocarpine and other imidazole alkaloids. <i>Genetic Resources and Crop Evolution</i> , 2011 , 58, 471-480	2	16
381	Synthesis of potentially bioactive PABA-related N-(aminoalkyl)lactamic amino acids and esters via selective S(N)Ar reactions. <i>Amino Acids</i> , 2011 , 40, 197-204	3.5	10
380	Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2011 , 38, 863-71	4.2	26
379	Chemical profile of meta-chlorophenylpiperazine (m-CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray fluorescence, ion mobility mass spectrometry and NMR. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 3053-64	4.4	42
378	Secretome of the preimplantation human embryo by bottom-up label-free proteomics. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 1331-9	4.4	47
377	Distinct hepatic lipid profile of hypertriglyceridemic mice determined by easy ambient sonic-spray ionization mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 1651-9	4.4	22
376	In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa. <i>Malaria Journal</i> , 2011 , 10, 112	3.6	21
375	Visualizing inhibition of fatty acid synthase through mass spectrometric analysis of mitochondria from melanoma cells. <i>Rapid Communications in Mass Spectrometry</i> , 2011 , 25, 449-52	2.2	5
374	IRMPD and ECD fragmentation of intermolecular cross-linked peptides. <i>Journal of Mass Spectrometry</i> , 2011 , 46, 262-8	2.2	6
373	Direct monitoring of drug degradation by easy ambient sonic-spray ionization mass spectrometry: the case of enalapril. <i>Journal of Mass Spectrometry</i> , 2011 , 46, 1269-73	2.2	14
372	Intrinsic mobility of gaseous cationic and anionic aggregates of ionic liquids. <i>ChemPhysChem</i> , 2011 , 12, 1444-7	3.2	13
371	Massenspektrometrie: die Brcke zwischen Gasphasenchemie und Chemie in LEung. <i>Angewandte Chemie</i> , 2011 , 123, 5370-5372	3.6	18

370	The bridge connecting gas-phase and solution chemistries. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5261-3	16.4	108
369	Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma. <i>Analyst, The</i> , 2011 , 136, 3753-7	5	28
368	Tetrachlorocarbonyliridates: water-soluble carbon monoxide releasing molecules rate-modulated by the sixth ligand. <i>Inorganic Chemistry</i> , 2011 , 50, 2334-45	5.1	39
367	On the mechanism of the aza-Morita-Baylis-Hillman reaction: ESI-MS interception of a unique new intermediate. <i>Chemical Communications</i> , 2011 , 47, 6593-5	5.8	40
366	Metabolic alterations in different developmental stages of Pilocarpus microphyllus. <i>Planta Medica</i> , 2011 , 77, 293-300	3.1	9
365	Phosphorylimidazole derivatives: potentially biosignaling molecules. <i>Journal of Organic Chemistry</i> , 2011 , 76, 8003-8	4.2	41
364	MSn of the six isomers of (GlcN)2(GlcNAc)2 aminoglucan tetrasaccharides (diacetylchitotetraoses): Rules of fragmentation for the sodiated molecules and application to sequence analysis of hetero-chitooligosaccharides. <i>Carbohydrate Polymers</i> , 2011 , 84, 713-726	10.3	17
363	In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. <i>Food Chemistry</i> , 2011 , 126, 1239-1245	8.5	44
362	Response surface modelling of the production of structured lipids from soybean oil using Rhizomucor miehei lipase. <i>Food Chemistry</i> , 2011 , 127, 28-33	8.5	23
361	Coordinated nitroxyl anion is produced and released as nitrous oxide by the decomposition of iridium-coordinated nitrosothiols. <i>Inorganica Chimica Acta</i> , 2011 , 366, 85-90	2.7	3
360	Synthesis of [60]fullerene derivatives bearing five-membered heterocyclic wings and an investigation of their photophysical kinetic properties. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 217, 184-190	4.7	8
359	Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. Journal of Hazardous Materials, 2011 , 189, 391-6	12.8	51
358	Easy Ambient Sonic-Spray Ionization Mass Spectrometric of Olive Oils: Quality Control and Certification of Geographical Origin. <i>Analytical Letters</i> , 2011 , 44, 1489-1497	2.2	25
357	The Famous Amazonian Rosewood Essential Oil: Characterization and Adulteration Monitoring by Electrospray Ionization Mass Spectrometry Fingerprinting. <i>Analytical Letters</i> , 2011 , 44, 2417-2422	2.2	6
356	Analysis of Cocaine and Crack Cocaine via Thin Layer Chromatography Coupled to Easy Ambient Sonic-Spray Ionization Mass Spectrometry. <i>American Journal of Analytical Chemistry</i> , 2011 , 02, 658-664	0.7	23
355	Other chemical constituents isolated from Solanum crinitum Lam. (Solanaceae). <i>Journal of the Brazilian Chemical Society</i> , 2010 , 21, 2211-2219	1.5	11
354	Citocalasinas produzidas por Xylaria sp., um fungo endof[tico de Piper aduncum (piperaceae). <i>Quimica Nova</i> , 2010 , 33, 2038-2041	1.6	14
353	Search for alkaloids on callus culture of Passiflora alata. <i>Brazilian Archives of Biology and Technology</i> , 2010 , 53, 901-910	1.8	8

(2010-2010)

352	19-base pair deletion polymorphism of the dihydrofolate reductase (DHFR) gene: maternal risk of Down syndrome and folate metabolism. <i>Sao Paulo Medical Journal</i> , 2010 , 128, 215-8	1.6	5
351	Influñcia da fermenta ß e secagem de amñdoas de cacau no teor de compostos fen l icos e na aceita ß sensorial. <i>Food Science and Technology</i> , 2010 , 30, 142-150	2	25
350	Effect of endometriosis on the protein expression pattern of follicular fluid from patients submitted to controlled ovarian hyperstimulation for in vitro fertilization. <i>Human Reproduction</i> , 2010 , 25, 1755-66	5.7	16
349	Petroleomics by EASI(+/-) FT-ICR MS. Analytical Chemistry, 2010, 82, 3990-6	7.8	87
348	Instantaneous chemical profiles of banknotes by ambient mass spectrometry. <i>Analyst, The</i> , 2010 , 135, 2533-9	5	79
347	Intramolecular catalysis of phosphodiester hydrolysis by two imidazoles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8513-23	16.4	40
346	Efficient phosphodiester hydrolysis by luminescent terbium(III) and europium(III) complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 6013-25	5.1	30
345	Lactones and quinones from the tubers of Sinningia aggregata. <i>Journal of Natural Products</i> , 2010 , 73, 1434-7	4.9	10
344	Fast screening and secure confirmation of milk powder adulteration with maltodextrin via electrospray ionization-mass spectrometry [ESI(+)-MS] and selective enzymatic hydrolysis. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 9407-12	5.7	14
343	Palladium-catalyzed tandem Heck-lactonization from o-iodophenols and enoates: synthesis of coumarins and the study of the mechanism by electrospray ionization mass spectrometry. <i>Journal of Organic Chemistry</i> , 2010 , 75, 7085-91	4.2	45
342	Flavour characterization of red wines by descriptive analysis and ESI mass spectrometry. <i>Food Quality and Preference</i> , 2010 , 21, 755-762	5.8	26
341	Evaluation of sample preparation protocols for proteomic analysis of sunflower leaves. <i>Talanta</i> , 2010 , 80, 1545-51	6.2	21
340	Fingerprinting of propolis by easy ambient sonic-spray ionization mass spectrometry. <i>Talanta</i> , 2010 , 81, 100-8	6.2	44
339	A Highly Effective Antioxidant and Artificial Marker for Biodiesel. <i>Energy & amp; Fuels</i> , 2010 , 24, 6522-65	5 2 ₁ 6 ₁	30
338	Mechanism and synthesis of pharmacologically active quinolones from Morita B aylis⊞illman adducts. <i>Tetrahedron</i> , 2010 , 66, 4370-4376	2.4	31
337	Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Journal of Dairy Science</i> , 2010 , 93, 5661-7	4	67
336	Single embryo and oocyte lipid fingerprinting by mass spectrometry. <i>Journal of Lipid Research</i> , 2010 , 51, 1218-27	6.3	94
335	Intrinsic acidity and electrophilicity of gaseous propargyl/allenyl carbocations. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 2580-5	3.9	6

334	Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents. <i>Journal of Natural Products</i> , 2010 , 73, 1180-3	4.9	51
333	Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry. <i>Analyst, The</i> , 2010 , 135, 738-44	5	71
332	Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization. <i>Analyst, The</i> , 2010 , 135, 726-30	5	48
331	Fingerprinting and aging of ink by easy ambient sonic-spray ionization mass spectrometry. <i>Analyst, The,</i> 2010 , 135, 745-50	5	79
330	Ambient mass spectrometry: bringing MS into the "real world". <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 265-94	4.4	278
329	Chronic hyperhomocysteinemia impairs vascular function in ovariectomized rat carotid arteries. <i>Amino Acids</i> , 2010 , 38, 1515-22	3.5	12
328	Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria. <i>Journal of Molecular Neuroscience</i> , 2010 , 41, 48-54	3.3	11
327	Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. <i>Journal of Thrombosis and Thrombolysis</i> , 2010 , 29, 32-40	5.1	21
326	Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. <i>International Journal of Food Microbiology</i> , 2010 , 142, 156	- 63 * ⁸	45
325	Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats. <i>Vascular Pharmacology</i> , 2010 , 53, 99-106	5.9	3
324	Easy mass spectrometry for metabolomics and quality control of vegetable and animal fats. <i>European Journal of Lipid Science and Technology</i> , 2010 , 112, 434-438	3	25
323	Organic Reaction Studies by ESI-MS 2010 , 63-111		2
322	Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry. Journal of Applied Polymer Science, 2010, 117, n/a-n/a	2.9	3
321	Absolute assignment of constitutional isomers via structurally diagnostic fragment ions: the challenging case of ⊞- and ⊞cyl naphthalenes. <i>Journal of the American Society for Mass Spectrometry</i> , 2010 , 21, 2041-50	3.5	6
320	Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. <i>Phytochemistry</i> , 2010 , 71, 1539-44	4	37
319	Fingerprinting of bottle-grade poly(ethylene terephthalate) via matrix-assisted laser desorption/ionization mass spectrometry. <i>Polymer Degradation and Stability</i> , 2010 , 95, 666-671	4.7	13
318	Palladium-catalyzed oxyarylation of olefins using silver carbonate as the base. Probing the mechanism by electrospray ionization mass spectrometry. <i>Journal of Organometallic Chemistry</i> , 2010 , 695, 2062-2067	2.3	19
317	Analysis of fuels via easy ambient sonic-spray ionization mass spectrometry. <i>Analytica Chimica Acta</i> , 2010 , 659, 15-22	6.6	44

316	Real-time monitoring of the progress of polymerization reactions directly on surfaces at open atmosphere by ambient mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 3441	1 ² 6 ²	11
315	Sensory evaluation of black instant coffee beverage with some volatile compounds present in aromatic oil from roasted coffee. <i>Food Science and Technology</i> , 2009 , 29, 76-80	2	17
314	A new polyacetylene from Vernonia scorpioides (Lam.) Pers. (Asteraceae) and its in vitro antitumoral activity. <i>Journal of the Brazilian Chemical Society</i> , 2009 , 20, 1327-1333	1.5	14
313	Homocysteine and MTHFR and VEGF gene polymorphisms: impact on coronary artery disease. <i>Arquivos Brasileiros De Cardiologia</i> , 2009 , 92, 263-8	1.2	14
312	Use of Electrospray Ionization Mass Spectrometry to Fingerprint Beer 2009 , 923-934		1
311	Green and roasted arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. <i>Journal of the Brazilian Chemical Society</i> , 2009 , 20, 313-321	1.5	38
310	Mass Spectrometry and Gas-Phase Chemistry of Anilines 2009 ,		2
309	Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. <i>Journal of Psychiatric Research</i> , 2009 , 43, 978-86	5.2	140
308	Hyperhomocysteinemia induced by feeding rats diets rich in DL-homocysteine thiolactone promotes alterations on carotid reactivity independent of arterial structure. <i>Vascular Pharmacology</i> , 2009 , 51, 291-8	5.9	7
307	The three-component biginelli reaction: a combined experimental and theoretical mechanistic investigation. <i>Chemistry - A European Journal</i> , 2009 , 15, 9799-804	4.8	86
306	Chemoselective aromatic azido reduction with concomitant aliphatic azide employing Al/Gd triflates/NaI and ESI-MS mechanistic studies. <i>Chemistry - A European Journal</i> , 2009 , 15, 7215-24	4.8	40
305	Brfisted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations. <i>Chemistry - A European Journal</i> , 2009 , 15, 124	€0 ⁸ 9	69
304	Dimerization of ionized 4-(methyl mercapto)-phenol during ESI, APCI and APPI mass spectrometry. Journal of Mass Spectrometry, 2009 , 44, 1389-94	2.2	4
303	Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. <i>Polymer Degradation and Stability</i> , 2009 , 94, 1849-1859	4.7	64
302	Synthesis of benzophenones from geminal biaryl ethenes using m-chloroperbenzoic acid. <i>Tetrahedron Letters</i> , 2009 , 50, 2312-2316	2	45
301	Recognition and resolution of isomeric alkyl anilines by mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 269-77	3.5	23
300	Fabric softeners: nearly instantaneous characterization and quality control of cationic surfactants by easy ambient sonic-spray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 357-62	2.2	25
299	Mass spectrometry fingerprinting of media used for in vitro production of bovine embryos. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 1313-20	2.2	13

298	Increased endothelin-1 reactivity and endothelial dysfunction in carotid arteries from rats with hyperhomocysteinemia. <i>British Journal of Pharmacology</i> , 2009 , 157, 568-80	8.6	15
297	Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. <i>Food Chemistry</i> , 2009 , 112, 868-873	8.5	32
296	Brazilian cachall: Bingle shotllypification of fresh alembic and industrial samples via electrospray ionization mass spectrometry fingerprinting. <i>Food Chemistry</i> , 2009 , 115, 1064-1068	8.5	27
295	Synthesis of 日,flunsaturated aryl esters via Heck reaction of unsymmetrical aryl tellurides. <i>Tetrahedron Letters</i> , 2009 , 50, 5589-5595	2	16
294	Structural and kinetic characterization of a maize aldose reductase. <i>Plant Physiology and Biochemistry</i> , 2009 , 47, 98-104	5.4	12
293	Synthesis and biological evaluation of cytotoxic properties of stilbene-based resveratrol analogs. <i>European Journal of Medicinal Chemistry</i> , 2009 , 44, 701-7	6.8	21
292	Can mass dissociation patterns of transition-metal complexes be predicted from electrochemical data?. <i>Journal of Mass Spectrometry</i> , 2009 , 44, 361-7	2.2	8
291	Catalase vs peroxidase activity of a manganese(II) compound: identification of a Mn(III)-(mu-O)(2)-Mn(IV) reaction intermediate by electrospray ionization mass spectrometry and electron paramagnetic resonance spectroscopy. <i>Inorganic Chemistry</i> , 2009 , 48, 4569-79	5.1	32
290	Dualistic nature of the mechanism of the Morita-Baylis-Hillman reaction probed by electrospray ionization mass spectrometry. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3031-7	4.2	94
289	The mechanism of dephosphorylation of bis(2,4-dinitrophenyl) phosphate in mixed micelles of cationic surfactants and lauryl hydroxamic acid. <i>Journal of Organic Chemistry</i> , 2009 , 74, 8254-60	4.2	27
288	Suicide nucleophilic attack: reactions of benzohydroxamate anion with bis(2,4-dinitrophenyl) phosphate. <i>Journal of Organic Chemistry</i> , 2009 , 74, 5011-6	4.2	47
287	From monomers to geometry-constrained molecules: one step further toward cyanide bridged wires. <i>Inorganic Chemistry</i> , 2009 , 48, 11226-35	5.1	15
286	Characterization of the mechanisms underlying the inflammatory response to Polistes lanio lanio (paper wasp) venom in mouse dorsal skin. <i>Toxicon</i> , 2009 , 53, 42-52	2.8	21
285	Constituents of the leaves of Magnolia ovata. <i>Journal of Natural Products</i> , 2009 , 72, 1529-32	4.9	17
284	Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry. <i>Analyst, The,</i> 2009 , 134, 1652-7	5	63
283	Evaluation of metal-ion stress in sunflower (Helianthus annuus L.) leaves through proteomic changes. <i>Metallomics</i> , 2009 , 1, 107-113	4.5	32
282	Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 4030-4	5.7	67
281	Composi ß qulmica e atividade biolgica de extrato oleoso de prpolis: uma alternativa ao extrato etanlico. <i>Quimica Nova</i> , 2009 , 32, 296-302	1.6	42

(2008-2009)

280	Prediction of the Solubility of Aromatic Compounds from Brazilian Roasted Coffee (2-Methylpyrazine; 2-Furfurylalcohol; 2,5-Dimethylpyrazine; .GAMMAButyrolactone and 2-Furfurylacetate) in SC-CO2. <i>Journal of Chemical Engineering of Japan</i> , 2009 , 42, 219-230	0.8	6
279	Structural and functional characterization of myotoxin, Cr-IV 1, a phospholipase A2 D49 from the venom of the snake Calloselasma rhodostoma. <i>Biologicals</i> , 2008 , 36, 168-76	1.8	10
278	HPLC-ESI-MS/MS of imidazole alkaloids in Pilocarpus microphyllus. <i>Molecules</i> , 2008 , 13, 1518-29	4.8	17
277	Biological and biochemical characterization of new basic phospholipase A(2) BmTX-I isolated from Bothrops moojeni snake venom. <i>Toxicon</i> , 2008 , 51, 1509-19	2.8	37
276	Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. <i>Analytical Chemistry</i> , 2008 , 80, 2744-50	7.8	143
275	Hyperhomocysteinaemia-induced cardiovascular changes in rats. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2008 , 35, 949-56	3	9
274	Cyclam kappa4 to kappa3 ligand denticity change upon mono-n-substitution with a carboxypropyl pendant arm in a ruthenium nitrosyl complex. <i>Inorganic Chemistry</i> , 2008 , 47, 4118-25	5.1	12
273	Intramolecular acid-base catalysis of a phosphate diester: modeling the ribonuclease mechanism. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2436-7	16.4	33
272	Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. <i>Analytical Chemistry</i> , 2008 , 80, 898-903	7.8	151
271	Recognition of cyclic, acyclic, exocyclic, and spiro acetals via structurally diagnostic ion/molecule reactions with the (CH3)2N-C(+)=O acylium ion. <i>Journal of Organic Chemistry</i> , 2008 , 73, 5549-57	4.2	2
270	Single-shot biodiesel analysis: nearly instantaneous typification and quality control solely by ambient mass spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 7882-6	7.8	48
269	Identification of ellagic acid derivatives in methanolic extracts from Qualea species. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2008 , 63, 794-800	1.7	11
268	Synthesis and characterization of the [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 dimer. <i>Transition Metal Chemistry</i> , 2008 , 33, 1059-1065	2.1	4
267	Sweet Basil (Ocimum basilicum) Extracts Obtained by Supercritical Fluid Extraction (SFE): Global Yields, Chemical Composition, Antioxidant Activity, and Estimation of the Cost of Manufacturing. <i>Food and Bioprocess Technology</i> , 2008 , 1, 326-338	5.1	64
266	Perfume fingerprinting by easy ambient sonic-spray ionization mass spectrometry: nearly instantaneous typification and counterfeit detection. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 3662-6	2.2	62
265	Quantitation of trace phenolic compounds in water by trap-and-release membrane introduction mass spectrometry after acetylation. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 4105-8	2.2	8
264	Peptide fingerprinting of snake venoms by direct infusion nano-electrospray ionization mass spectrometry: potential use in venom identification and taxonomy. <i>Journal of Mass Spectrometry</i> , 2008 , 43, 594-9	2.2	26
263	Recognizing alpha-, beta- or gamma-substitution in pyridines by mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2008 , 43, 1636-40	2.2	9

262	Multiply charged (di-)radicals. Angewandte Chemie - International Edition, 2008, 47, 151-4	16.4	21
261	The use of electrospray ionization tandem mass spectrometry on the structural characterization of novel asymmetric metallo-organic supermolecules, based on pentafluorophenylporphyrins and ruthenium complexes. <i>Polyhedron</i> , 2008 , 27, 2721-2729	2.7	7
2 60	Faster and simpler determination of chlorophenols in water by fiber introduction mass spectrometry. <i>Analytica Chimica Acta</i> , 2008 , 620, 97-102	6.6	11
259	The catalytic mechanism of indole-3-glycerol phosphate synthase (IGPS) investigated by electrospray ionization (tandem) mass spectrometry. <i>Tetrahedron Letters</i> , 2008 , 49, 5914-5917	2	6
258	Intrinsic gas-phase acidity and electrophilicity of model heterocations and carbocations relative to pyridine: Adduct formation versus ⊞- or ¶proton transfer) elimination. <i>Applied Catalysis A: General</i> , 2008 , 336, 116-127	5.1	3
257	Antioxidant activity of Caryocar brasiliense (pequi) and characterization of components by electrospray ionization mass spectrometry. <i>Food Chemistry</i> , 2008 , 110, 711-717	8.5	59
256	Chloroform formation by chlorination of aqueous algae suspensions: online monitoring via membrane introduction mass spectrometry. <i>Journal of the Brazilian Chemical Society</i> , 2008 , 19, 950-955	1.5	5
255	Mass spectrometry analysis of surface tension reducing substances produced by a pah-degrading Pseudomonas citronellolis strain. <i>Brazilian Journal of Microbiology</i> , 2008 , 39, 353-356	2.2	6
254	Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for Down syndrome in Brazil. <i>Genetics and Molecular Research</i> , 2008 , 7, 33-42	1.2	54
253	Biodiesel Typification and Quality Control by Direct Infusion Electrospray Ionization Mass Spectrometry Fingerprinting. <i>Energy & Direct Infusion Electrospray Ionization Mass Spectrometry Fingerprinting</i> . <i>Energy & Direct Infusion Electrospray Ionization Mass Spectrometry Fingerprinting</i> .	4.1	45
252	The mechanism of the Stille reaction investigated by electrospray ionization mass spectrometry. Journal of Organic Chemistry, 2007 , 72, 5809-12	4.2	102
251	Electrospray ionization mass spectrometry fingerprinting of Brazilian artisan cachall aged in different wood casks. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 2094-102	5.7	39
250	R(Ar)ON2+ vs. R(Ar)N2O+: Are Alkoxy-(Aryloxy-)diazonium Ions or Alkyl-(Aryl-)N-nitroso-onium Ions Formed in the Gas-Phase Reactions of N2O with H+, Me+, Ph+, PhCH2+, Tr+ and PhCO+?. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 70-77	3.2	3
249	Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 1273-8	2.2	30
248	Differentiation of rum and Brazilian artisan cachall via electrospray ionization mass spectrometry fingerprinting. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 1294-9	2.2	22
247	Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 1319-25	2.2	40
246	Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 825-9	2.2	11
245	Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 1358-6	2.2	7

(2007-2007)

244	Influence of polymerization conditions on the molecular weight and polydispersity of polyepichlorohydrin. <i>European Polymer Journal</i> , 2007 , 43, 2141-2148	5.2	18	
243	Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry. <i>Food Chemistry</i> , 2007 , 104, 1048-1054	8.5	64	
242	Synthesis, solid-state and in-solution structures of a new seven coordinated manganese(II) complex via X-ray diffraction and electrospray ionization mass spectrometry. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 863-866	3.1	16	
241	Cloud point extraction applied to casein proteins of cow milk and their identification by mass spectrometry. <i>Analytica Chimica Acta</i> , 2007 , 590, 166-72	6.6	41	
240	Electrospray ionization mass spectrometry fingerprinting of essential oils: Spices from the Labiatae family. <i>Food Chemistry</i> , 2007 , 100, 1283-1288	8.5	37	
239	Adsorption kinetic and properties of self-assembled monolayer based on mono(6-deoxy-6-mercapto)-毗yclodextrin molecules. <i>Journal of Electroanalytical Chemistry</i> , 2007 , 601, 181-193	4.1	18	
238	Determination of memantine in human plasma by liquid chromatography-electrospray tandem mass spectrometry: application to a bioequivalence study. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2007 , 848, 311-6	3.2	40	
237	Characterization of the variation in the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry. <i>Rapid</i>	2.2	24	
236	Electrospray ionization mass spectrometric characterization of key Te(IV) cationic intermediates for the addition of TeCl4 to alkynes. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 1479-84	2.2	8	
235	Indigo Carmine degradation by hypochlorite in aqueous medium monitored by electrospray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 1893-1899	2.2	18	
234	Characterisation of fungal lanostane-type triterpene acids by electrospray ionisation mass spectrometry. <i>Phytochemical Analysis</i> , 2007 , 18, 489-95	3.4	4	
233	1-n-Butyl-3-methylimidazolium tetrachloro-indate (BMI?InCl4BMI?InCl4) as a media for the synthesis of biodiesel from vegetable oils. <i>Journal of Catalysis</i> , 2007 , 249, 154-161	7-3	90	
232	Electrospray ionization mass spectrometry fingerprinting of propolis of native Brazilian stingless bees. <i>Apidologie</i> , 2007 , 38, 93-103	2.3	26	
231	Cell suspension as a tool to study the biosynthesis of pilocarpine in Jaborandi. <i>Plant Biology</i> , 2007 , 9, 793-9	3.7	7	
230	Oxidation of Sodium Dodecylbenzenesulfonate with Chrysotile: On-line Monitoring by Membrane Introduction Mass Spectrometry. <i>Journal of Surfactants and Detergents</i> , 2007 , 10, 207-210	1.9	4	
229	Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 45, 706-13	3.5	32	
228	Phenolic antioxidants identified by ESI-MS from Yerba mat (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. <i>Molecules</i> , 2007 , 12, 423-32	4.8	213	
227	Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. <i>Molecules</i> , 2007 , 12, 1352-66	4.8	129	

226	Electrospray ionization mass spectrometry: a major tool to investigate reaction mechanisms in both solution and the gas phase. <i>European Journal of Mass Spectrometry</i> , 2007 , 13, 19-28	1.1	166
225	Combination of angiotensin-converting enzyme and methylenetetrahydrofolate reductase gene polymorphisms as determinant risk factors for chronic allograft dysfunction. <i>Transplantation Proceedings</i> , 2007 , 39, 78-80	1.1	10
224	Effect of folate, vitamin B6, and vitamin B12 intake and MTHFR C677T polymorphism on homocysteine concentrations of renal transplant recipients. <i>Transplantation Proceedings</i> , 2007 , 39, 310	63 ⁻¹ 5 ⁻¹	5
223	Mass spectrometric evidence for a zinc-porphyrin complex as the red pigment in dry-cured Iberian and Parma ham. <i>Meat Science</i> , 2007 , 75, 203-10	6.4	33
222	A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. <i>Insect Biochemistry and Molecular Biology</i> , 2007 , 37, 1249-61	4.5	69
221	Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. Journal of Biotechnology, 2007 , 128, 693-703	3.7	108
220	The mechanism of Trger's base formation probed by electrospray ionization mass spectrometry. Journal of Organic Chemistry, 2007 , 72, 4048-54	4.2	30
219	Probing the mechanism of direct Mannich-type alpha-methylenation of ketoesters via electrospray ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2007 , 42, 1287-93	2.2	33
218	Comparative metallomics for transgenic and non-transgenic soybeans. <i>Journal of Analytical Atomic Spectrometry</i> , 2007 , 22, 1501	3.7	23
217	Analysis of isoflavonoids from leguminous plant extracts by RPHPLC/DAD and electrospray ionization mass spectrometry. <i>International Journal of Food Sciences and Nutrition</i> , 2007 , 58, 116-24	3.7	20
216	Electrospray ionization mass spectrometry of a novel family of complexes in which various nitroso compounds are stabilized via coordination to [IrCl5]2 <i>Inorganic Chemistry</i> , 2007 , 46, 4827-34	5.1	5
215	Intrinsic gas-phase reactivity of ionized 6-(oxomethylene)cyclohexa-2,4-dienone: evidence pointing to its neutral alpha-oxoketene counterpart as a proper precursor of various benzopyran-4-ones and analogues. <i>Journal of Organic Chemistry</i> , 2007 , 72, 5986-93	4.2	6
214	Identification of sulfated steroidal glycosides from the starfish Heliaster helianthus by electrospray ionization mass spectrometry. <i>Arkivoc</i> , 2007 , 2007, 301-309	0.9	2
213	Antimicrobial metabolites produced by an intertidal Acremonium furcatum. <i>Phytochemistry</i> , 2006 , 67, 2403-10	4	15
212	Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. <i>Process Biochemistry</i> , 2006 , 41, 483-488	4.8	100
211	HPLC method for quantification and characterization of cholesterol and its oxidation products in eggs. <i>Lipids</i> , 2006 , 41, 615-22	1.6	31
210	Comparative study of lipids in mature seeds of six Cordia species (family Boraginaceae) collected in different regions of Brazil. <i>Lipids</i> , 2006 , 41, 813-7	1.6	4
209	Alpha1D-adrenoceptor-induced relaxation on rat carotid artery is impaired during the endothelial dysfunction evoked in the early stages of hyperhomocysteinemia. <i>European Journal of Pharmacology</i> , 2006 , 543, 83-91	5.3	34

(2006-2006)

208	On the species involved in the vaporization of imidazolium ionic liquids in a steam-distillation-like process. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7251-4	16.4	81
207	The atmospheric pressure Meerwein reaction. <i>Journal of Mass Spectrometry</i> , 2006 , 41, 470-6	2.2	6
206	Formal gas-phase polar [4 + 1+] cycloaddition of ionized methylene to alpha-dicarbonyl compounds: synthesis of 2-unsubstituted 1,3-dioxoles. <i>Journal of Mass Spectrometry</i> , 2006 , 41, 735-40	2.2	1
205	Ambient Eberlin reactions via desorption electrospray ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2006 , 41, 1242-6	2.2	29
204	Characterization of must and wine of six varieties of grapes by direct infusion electrospray ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2006 , 41, 185-90	2.2	49
203	Structurally diagnostic ion/molecule reactions: class and functional-group identification by mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2006 , 41, 141-56	2.2	59
202	On the Species Involved in the Vaporization of Imidazolium Ionic Liquids in a Steam-Distillation-Like Process. <i>Angewandte Chemie</i> , 2006 , 118, 7409-7412	3.6	19
2 01	Effect of the maceration time on chemical composition of extracts of Brazilian propolis. <i>Journal of Apicultural Research</i> , 2006 , 45, 137-144	2	3
200	Polar acetalization and transacetalization in the gas phase: the Eberlin reaction. <i>Chemical Reviews</i> , 2006 , 106, 188-211	68.1	73
199	A sorbicillinoid urea from an intertidal Paecilomyces marquandii. <i>Journal of Natural Products</i> , 2006 , 69, 1806-8	4.9	28
198	HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 4107-13	5.7	76
197	Electrospray Ionization Tandem Mass Spectrometry of Polymetallic EDxo- and Carboxylate-Bridged [Ru3O(CH3COO)6(Py)2(L)]+ Complexes: Intrinsic Ligand (L) Affinities with Direct Access to Steric Effects. <i>Organometallics</i> , 2006 , 25, 3245-3250	3.8	20
196	Intrinsic acidity of dimethylhalonium ions: evidence for hyperconjugation in dimethylhalonium ylides in the gas phase. <i>Journal of Organic Chemistry</i> , 2006 , 71, 2625-9	4.2	19
195	Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. <i>Peptides</i> , 2006 , 27, 667-74	3.8	84
194	Brazilian Propolis ofTetragonisca angustulaandApis mellifera. <i>Apidologie</i> , 2006 , 37, 398-407	2.3	32
193	Investigation of reaction mechanisms by electrospray ionization mass spectrometry: characterization of intermediates in the degradation of phenol by a novel iron/magnetite/hydrogen peroxide heterogeneous oxidation system. <i>Rapid Communications in</i>	2.2	33
192	Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 2104-8	2.2	29
191	Transient intermediates of the Tebbe reagent intercepted and characterized by atmospheric pressure chemical ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 2626-9	2.2	12

190	Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 2901-5	2.2	263
189	Electrospray ionization mass spectrometry fingerprinting of perfumes: Rapid classification and counterfeit detection. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 3654-8	2.2	17
188	Proteomic and SAGE profiling of murine melanoma progression indicates the reduction of proteins responsible for ROS degradation. <i>Proteomics</i> , 2006 , 6, 1460-70	4.8	37
187	The role of ionic liquids in co-catalysis of Baylis-Hillman reaction: interception of supramolecular species via electrospray ionization mass spectrometry. <i>Journal of Physical Organic Chemistry</i> , 2006 , 19, 731-736	2.1	65
186	Electrospray ionization mass spectrometry analysis of polyisoprenoid alcohols via Li+ cationization. <i>Analytical Biochemistry</i> , 2006 , 355, 189-200	3.1	17
185	Volatile compounds from pitanga fruit (Eugenia uniflora L.). Food Chemistry, 2006 , 99, 1-5	8.5	70
184	Solid state and solution characterization of a new dinuclear nickel (II) complex: The search for synthetic models for urease. <i>Journal of Molecular Structure</i> , 2006 , 797, 154-164	3.4	18
183	Synthesis and characterization of Sb(V) denosine and Sb(V) duanosine complexes in aqueous solution. <i>Inorganica Chimica Acta</i> , 2006 , 359, 159-167	2.7	17
182	Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). <i>Phytochemistry</i> , 2006 , 67, 1964-9	4	97
0	Synthesis and crystal structure of		
181	2,4-dihydro-4-[(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)imino]-5-methyl-2-phenyl-3H-pyrazol-3-or and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064	1 e 2.7	19
180		3·5	25
	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064	,	
180	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064 Distonoid ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1014-1022 Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. <i>Tetrahedron</i>	3.5	25
180 179	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064 Distonoid ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1014-1022 Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. <i>Tetrahedron Letters</i> , 2006 , 47, 6775-6779 Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl BaylisHillman adduct: a	3.5	25 57
180 179 178	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064 Distonoid ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1014-1022 Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. <i>Tetrahedron Letters</i> , 2006 , 47, 6775-6779 Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl BaylisHillman adduct: a new key intermediate intercepted by ESI-(+)-MS(/MS) monitoring. <i>Tetrahedron Letters</i> , 2006 , 47, 8427-8 Electrophilic aromatic nitration: understanding its mechanism and substituent effects. <i>Journal of</i>	3.5 2 3431	25 57 13
180 179 178	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064 Distonoid ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1014-1022 Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. <i>Tetrahedron Letters</i> , 2006 , 47, 6775-6779 Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl BaylisHillman adduct: a new key intermediate intercepted by ESI-(+)-MS(/MS) monitoring. <i>Tetrahedron Letters</i> , 2006 , 47, 8427-8 Electrophilic aromatic nitration: understanding its mechanism and substituent effects. <i>Journal of Organic Chemistry</i> , 2006 , 71, 6192-203 Preparative Droplet Counter-Current Chromatography for the Separation of the New Nor-Seco-Triterpene and Pentacyclic Triterpenoids from Qualea Parviflora. <i>Chromatographia</i> , 2006 ,	3.5 2 3431 4.2	25 57 13 68
180 179 178 177	and its copper(II) complex. <i>Polyhedron</i> , 2006 , 25, 2055-2064 Distonoid ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 1014-1022 Intermolecular hydroamination and hydroarylation reactions of alkenes in ionic liquids. <i>Tetrahedron Letters</i> , 2006 , 47, 6775-6779 Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl BaylisHillman adduct: a new key intermediate intercepted by ESI-(+)-MS(/MS) monitoring. <i>Tetrahedron Letters</i> , 2006 , 47, 8427-8 Electrophilic aromatic nitration: understanding its mechanism and substituent effects. <i>Journal of Organic Chemistry</i> , 2006 , 71, 6192-203 Preparative Droplet Counter-Current Chromatography for the Separation of the New Nor-Seco-Triterpene and Pentacyclic Triterpenoids from Qualea Parviflora. <i>Chromatographia</i> , 2006 , 64, 695-699 Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry. <i>Journal of Radioanalytical and Nuclear</i>	3.5 2 3431 4.2 2.1	25 57 13 68

(2005-2005)

17	Determination of phthalates in water using fiber introduction mass spectrometry. <i>Analyst, The</i> , 2005 , 130, 188-92	5	13	
17	Unexpected synthesis of conformationally restricted analogues of gamma-amino butyric acid (GABA): mechanism elucidation by electrospray ionization mass spectrometry. <i>Journal of Organic Chemistry</i> , 2005 , 70, 110-4	4.2	20	
17	Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry. <i>Environmental Science & Environmental Science & Envir</i>	10.3	98	
16	Sectrospray ionization mass spectrometry fingerprinting of beer. <i>Analyst, The</i> , 2005 , 130, 884-9	5	86	
16	8 Aflatoxin screening by MALDI-TOF mass spectrometry. <i>Analytical Chemistry</i> , 2005 , 77, 8155-7	7.8	49	
16	Electrospray ionization mass spectrometry fingerprinting of whisky: immediate proof of origin and authenticity. <i>Analyst, The</i> , 2005 , 130, 890-7	5	78	
16	Identification, molecular cloning and functional characterization of an octaprenyl pyrophosphate synthase in intra-erythrocytic stages of Plasmodium falciparum. <i>Biochemical Journal</i> , 2005 , 392, 117-26	3.8	41	
16	Absolute configuration assignment of ortho, meta, or para isomers by mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 431-436	3.5	30	
16	Cyclization reactions of acylium and thioacylium ions with isocyanates and isothiocyanates: gas phase synthesis of 3,4-dihydro-2,4-dioxo-2H-1,3,5-oxadiazinium ions. <i>Journal of the American</i> Society for Mass Spectrometry, 2005 , 16, 1602-7	3.5	6	
16	Hydrogen/Chlorine exchange reactions of gaseous carbanions. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 2045-51	3.5	10	
16	Adsorption of silanes bearing nitrogenated Lewis bases on SiO2/Si (100) model surfaces. <i>Journal of Colloid and Interface Science</i> , 2005 , 286, 303-9	9.3	8	
16	Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae). <i>Phytochemistry</i> , 2005 , 66, 2363-7	4	39	
16	Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). <i>Phytochemistry</i> , 2005 , 66, 1927-32	4	37	
15	Synthesis, properties and gas phase collision-induced dissociation of the heptanuclear doubly bridged complex [Ru(bpy)2(BPE)2{Ru3O(CH3COO)6(py)2}2](PF6)4. <i>Polyhedron</i> , 2005 , 24, 731-738	2.7	6	
15	A nitric oxide releaser based on the Ebxo-hexaacetate-bis(4-methylpyridine)triruthenium nitrosyl complex. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2891-2899	2.7	29	
15	Study of the spectroscopic and electrochemical properties of tetraruthenated porphyrins by theoretical experimental approach. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2629-2642	2.7	24	
15	Infinite zig-zag and cyclic-tetranuclear isomeric imidazolate-bridged polynuclear copper(II) complexes: Magnetic properties, catalytic activity and electrospray mass and tandem mass spectrometry characterization. <i>Inorganica Chimica Acta</i> , 2005 , 358, 3581-3591	2.7	25	
15	Identification of oligomers in polyethyleneterephthalate bottles for mineral water and fruit juice. Development and validation of a high-performance liquid chromatographic method for the determination of first series cyclic trimer. <i>Journal of Chromatography A</i> , 2005 , 1097, 130-7	4.5	17	

154	Production of pilocarpine in callus of jaborandi (pilocarpus microphyllus stapf). <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2005 , 41, 806-811	2.3	19
153	Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. <i>Biotechnology Progress</i> , 2005 , 21, 1562-6	2.8	139
152	On-line monitoring of bioreductions via membrane introduction mass spectrometry. <i>Biotechnology and Bioengineering</i> , 2005 , 90, 888-92	4.9	8
151	The proton-bound dimer of acetone. <i>Journal of Mass Spectrometry</i> , 2005 , 40, 127-8	2.2	5
150	Electrospray ionization mass and tandem mass spectra of a series of N-pyrazolylmethyl and N-triazolylmethyl N-phenylpiperazines: new dopaminergic ligands with potential antipsychotic properties. <i>Journal of Mass Spectrometry</i> , 2005 , 40, 815-20	2.2	11
149	Screening of organic nitrate explosives: selective ion/molecule reactions for the diagnostic ion NO2+. <i>Journal of Mass Spectrometry</i> , 2005 , 40, 1506-8	2.2	5
148	Solid films of blended poly(vinyl alcohol)/poly(vinyl pyrrolidone) for topical S-nitrosoglutathione and nitric oxide release. <i>Journal of Pharmaceutical Sciences</i> , 2005 , 94, 994-1003	3.9	31
147	Locating the charge site in isomeric pyrrolyl ions by Eberlin ion/molecule reactions. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 1775-1778	2.2	5
146	Supramolecular conformational effects in the electrocatalytic properties of electrostatic assembled films of meso(3- and 4-pyridyl) isomers of tetraruthenated porphyrins. <i>Journal of the Brazilian Chemical Society</i> , 2005 , 16, 418-425	1.5	21
145	Others flavonoids from Ouratea hexasperma (Ochnaceae). <i>Journal of the Brazilian Chemical Society</i> , 2005 , 16, 634-638	1.5	13
144	ACE gene titration in mice uncovers a new mechanism for ACE on the control of body weight. <i>Physiological Genomics</i> , 2005 , 20, 173-82	3.6	34
143	New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. <i>Journal of the Brazilian Chemical Society</i> , 2005 , 16, 1463-1466	1.5	42
142	A new neolignan and antioxidant phenols from Nectandra grandiflora. <i>Journal of the Brazilian Chemical Society</i> , 2005 , 16, 526-530	1.5	23
141	Constituintes polares das folhas de Machaonia brasiliensis (Rubiaceae). <i>Quimica Nova</i> , 2004 , 27, 525-52	71.6	5
140	Organoindate Room Temperature Ionic Liquid: Synthesis, Physicochemical Properties and Application. <i>Synthesis</i> , 2004 , 2004, 1155-1158	2.9	12
139	Chronic methionine load-induced hyperhomocysteinemia enhances rat carotid responsiveness for angiotensin II. <i>Pharmacology</i> , 2004 , 70, 91-9	2.3	18
138	The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. <i>Journal of Biological Chemistry</i> , 2004 , 279, 51749-59	5.4	94
137	Identification of three proteins that associate in vitro with the Leishmania (Leishmania) amazonensis G-rich telomeric strand. <i>FEBS Journal</i> , 2004 , 271, 3050-63		19

Keto-Enolic Equilibria of an Isatin-Schiff Base Copper(II) Complex and its Reactivity toward Carbohydrate Oxidation. <i>Transition Metal Chemistry</i> , 2004 , 29, 495-504	2.1	37
Fast screening of low molecular weight compounds by thin-layer chromatography and "on-spot" MALDI-TOF mass spectrometry. <i>Analytical Chemistry</i> , 2004 , 76, 2144-7	7.8	63
(trans-1,4-bis[(4-pyridyl)ethenyl]benzene)(2,2'-bipyridine)ruthenium(II) complexes and their supramolecular assemblies with beta-cyclodextrin. <i>Inorganic Chemistry</i> , 2004 , 43, 3521-7	5.1	38
Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. <i>Journal of Natural Products</i> , 2004 , 67, 908-10	4.9	89
Isomeric differentiation and quantification of ⊞, ⊞mino acid-containing tripeptides by the kinetic method: alkali metal-bound dimeric cluster ions. <i>International Journal of Mass Spectrometry</i> , 2004 , 231, 103-111	1.9	39
Synthesis of unexpected six-membered imides by free-radical carbocyclisation on carbohydrate templates. <i>Tetrahedron</i> , 2004 , 60, 9901-9908	2.4	2
Mass spectrometric characterization of two novel inflammatory peptides from the venom of the social wasp Polybia paulista. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1095-102	2.2	39
Probing the mechanism of the Heck reaction with arene diazonium salts by electrospray mass and tandem mass spectrometry. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2514-8	16.4	234
Probing the mechanism of the Baylis-Hillman reaction by electrospray ionization mass and tandem mass spectrometry. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4330-3	16.4	255
Probing the Mechanism of the Heck Reaction with Arene Diazonium Salts by Electrospray Mass and Tandem Mass Spectrometry. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4389-4389	16.4	16
Polymorphisms in the methylenetetrahydrofolate reductase and methionine synthase reductase genes and homocysteine levels in Brazilian children 2004 , 128A, 256-60		27
Probing the Mechanism of the Heck Reaction with Arene Diazonium Salts by Electrospray Mass and Tandem Mass Spectrometry. <i>Angewandte Chemie</i> , 2004 , 116, 2568-2572	3.6	76
Probing the Mechanism of the BaylisHillman Reaction by Electrospray Ionization Mass and Tandem Mass Spectrometry. <i>Angewandte Chemie</i> , 2004 , 116, 4430-4433	3.6	66
Electrospray mass and tandem mass spectrometry of homologous and isomeric singly, doubly, triply and quadruply charged cationic ruthenated meso-(phenyl)m-(meta- and para-pyridyl)n (m + n = 4) macrocyclic porphyrin complexes. <i>Journal of Mass Spectrometry</i> , 2004 , 39, 1161-7	2.2	30
Direct assignment of positional isomers by mass spectrometry: ortho, meta and para acyl and amidyl anilines and phenols and derivatives. <i>Journal of Mass Spectrometry</i> , 2004 , 39, 1176-1181	2.2	14
Gaseous supramolecules of imidazolium ionic liquids: "magic" numbers and intrinsic strengths of hydrogen bonds. <i>Chemistry - A European Journal</i> , 2004 , 10, 6187-93	4.8	225
Synthesis, spectroscopy, tandem mass spectrometry, and electrochemistry of the linearly bridged [{trans-1,4-bis[2-(4-pyridyl)ethenyl]-benzene}-{Ru3O(CH3COO)6(py)2}2 cluster. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2253-2260	2.7	25
New iridium(I) complexes with labile ligands: reactivity and structural characterization by atmospheric pressure mass and tandem mass spectrometry. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2100-21	3 6	21
	Fast screening of low molecular weight compounds by thin-layer chromatography and "on-spot" MALDH-TOF mass spectrometry. Analytical Chemistry, 2004, 76, 2144-7 (trans-1,4-bis[(4-pyridyl)ethenyl]benzene](2,2'-bipyridine)ruthenium(II) complexes and their supramolecular assemblies with beta-cyclodextrin. Inorganic Chemistry, 2004, 43, 3521-7 Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. Journal of Natural Products, 2004, 67, 908-10 Isomeric differentiation and quantification of H, Ramino acid-containing tripeptides by the kinetic method- alkali metal-bound dimeric cluster ions. International Journal of Mass Spectrometry, 2004, 231, 103-111 Synthesis of unexpected six-membered imides by free-radical carbocyclisation on carbohydrate templates. Tetrahedron, 2004, 60, 9901-9908 Mass spectrometric characterization of two novel inflammatory peptides from the venom of the social wasp Polybia paulista. Rapid Communications in Mass Spectrometry, 2004, 18, 1095-102 Probing the mechanism of the Heck reaction with arene diazonium salts by electrospray mass and tandem mass spectrometry. Angewandte Chemie - International Edition, 2004, 43, 2514-8 Probing the mechanism of the Baylis-Hillman reaction by electrospray ionization mass and tandem mass spectrometry. Angewandte Chemie - International Edition, 2004, 43, 4330-3 Probing the Mechanism of the Heck Reaction with Arene Diazonium Salts by Electrospray Mass and Tandem Mass Spectrometry. Angewandte Chemie - International Edition, 2004, 43, 4389-4389 Polymorphisms in the methylenetetrahydrofolate reductase and methionine synthase reductase genes and homocysteine levels in Brazilian children 2004, 128A, 256-60 Probing the Mechanism of the Baylis-Billman Reaction by Electrospray Ionization Mass and Tandem Mass Spectrometry. Angewandte Chemie, 2004, 116, 2568-2572 Probing the Mechanism of the Baylis-Billman Reaction by Electrospray Ionization Mass and Tandem Mass Spectrometry. Angewandte Chemie, 2004, 116, 430-4433 Electr	Fast screening of low molecular weight compounds by thin-layer chromatography and "on-spot" 7.8 MALD-TOF mass spectrometry. Analytical Chemistry, 2004, 76, 2144-7 (trans-1,4-bis[(4-pyridy) etheny]benzene)(2,2-bipyridine)ruthenium(II) complexes and their supramolecular assemblies with beta-cyclodextrin. Inorganic Chemistry, 2004, 43, 3521-7 Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. Journal of Natural Products, 2004, 67, 908-10 Isomeric differentiation and quantification of B, Bamino acid-containing tripeptides by the kinetic method: alkali metal-bound dimeric cluster ions. International Journal of Mass Spectrometry, 2004, 231, 103-111 Synthesis of unexpected six-membered imides by free-radical carbocyclisation on carbohydrate templates. Tetrahedron, 2004, 60, 9901-9908 Mass spectrometric characterization of two novel inflammatory peptides from the venom of the social wasp Polybia paulista. Rapid Communications in Mass Spectrometry, 2004, 18, 1095-102 Probing the mechanism of the Heck reaction with arene diazonium salts by electrospray mass and tandem mass spectrometry. Angewandte Chemie - International Edition, 2004, 43, 2514-8 Probing the mechanism of the Baylis-Hillman reaction by electrospray invitation mass and tandem mass spectrometry. Angewandte Chemie - International Edition, 2004, 43, 4389-4389 Polymorphisms in the methylenetetrahydrofolate reductase and methionine synthase reductase genes and homocysteine levels in Brazilian children 2004, 128A, 256-60 Probing the Mechanism of the Heck Reaction with Arene Diazonium Salts by Electrospray Mass and Tandem Mass Spectrometry. Angewandte Chemie, 2004, 116, 4430-4433 Electrospray mass and tandem mass spectrometry of homologous and isomeric singly, doubly, triply and quadruply charged cationic ruthenated meso-(phenyllm-(meta- and para-pyridyln (m+ n = 4) macrocyclic porphyrin complexes. Journal of Mass Spectrometry, 2004, 39, 116-17 Direct assignment of positional isomers by mass spectrometry, c

118	On the identification of ionic species of neutral halogen dimers, monomers and pincer type palladacycles in solution by electrospray mass and tandem mass spectrometry. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2349-2357	2.7	25
117	Gas-phase polar cycloadditions. International Journal of Mass Spectrometry, 2004, 235, 263-278	1.9	39
116	A new 20-membered macrocyclic dilactam: an unexpected product of a tri-n-butyltin hydride-mediated radical reaction. <i>Tetrahedron Letters</i> , 2004 , 45, 3317-3320	2	4
115	Meerwein reaction of phosphonium ions with epoxides and thioepoxides in the gas phase. <i>Journal of the American Society for Mass Spectrometry</i> , 2004 , 15, 398-405	3.5	11
114	Gas-phase reactions for selective detection of the explosives TNT and RDX. <i>Chemical Communications</i> , 2004 , 40-1	5.8	20
113	Tetrahydrofuran lignans from Nectandra megapotamica with trypanocidal activity. <i>Journal of Natural Products</i> , 2004 , 67, 42-5	4.9	68
112	Structure confirmation of a bioactive lactone isolated from Otoba parvifolia through the synthesis of a model compound. <i>Journal of Natural Products</i> , 2004 , 67, 1939-41	4.9	14
111	Reaction of bis(2,4-dinitrophenyl) phosphate with hydrazine and hydrogen peroxide. Comparison of O- and N- phosphorylation. <i>Journal of Organic Chemistry</i> , 2004 , 69, 7898-905	4.2	62
110	Intrinsic Reactivity of Gaseous Halocarbocations toward Model Aromatic Compounds. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 7009-7020	2.8	15
109	Electrospray ionization mass spectrometry fingerprinting of propolis. <i>Analyst, The</i> , 2004 , 129, 739-44	5	106
108	Coupling of Vinylic Tellurides with Alkynes Catalyzed by Palladium Dichloride: Evaluation of Synthetic and Mechanistic Details. <i>Organometallics</i> , 2004 , 23, 3990-3996	3.8	61
107	Mechanisms of nucleophilic substitution reactions of methylated hydroxylamines with bis(2,4-dinitrophenyl)phosphate. Mass spectrometric identification of key intermediates. <i>Journal of Organic Chemistry</i> , 2004 , 69, 6024-33	4.2	55
106	Monoterpene indole alkaloids from Palicourea crocea. <i>Journal of Natural Products</i> , 2004 , 67, 1886-8	4.9	22
105	Expression and purification of a small heat shock protein from the plant pathogen Xylella fastidiosa. <i>Protein Expression and Purification</i> , 2004 , 33, 297-303	2	11
104	Expression, purification and characterization of a novel bZIP protein from sugarcane. <i>Plant Science</i> , 2004 , 167, 583-595	5.3	2
103	S-nitrosoglutathione incorporated in poly(ethylene glycol) matrix: potential use for topical nitric oxide delivery. <i>Nitric Oxide - Biology and Chemistry</i> , 2004 , 11, 263-72	5	39
102	Hyperhomocysteinemia and MTHFR C677T and A1298C polymorphisms are associated with chronic allograft nephropathy in renal transplant recipients. <i>Transplantation Proceedings</i> , 2004 , 36, 2979-81	1.1	13
101	Luxenchalcone, a new bichalcone and other constituents from Luxemburgia octandra. <i>Journal of the Brazilian Chemical Society</i> , 2004 , 15, 146-149	1.5	7

100	The kinetic method as a structural diagnostic tool: ionized alpha-diketones as loosely one-electron bonded diacylium ion dimers. <i>European Journal of Mass Spectrometry</i> , 2003 , 9, 295-304	1.1	11
99	The chemical composition of danjica polymeric material found in Brazilian cane sugar industry. World Journal of Microbiology and Biotechnology, 2003 , 19, 625-630	4.4	
98	Reactions of gaseous acylium ions with 1,3-dienes: further evidence for polar [4 + 2+] Diels-Alder cycloaddition. <i>Journal of Mass Spectrometry</i> , 2003 , 38, 305-14	2.2	14
97	Gas-phase polar [4+ + 2] cycloaddition with ethyl vinyl ether: a structurally diagnostic ion-molecule reaction for 2-azabutadienyl cations. <i>Journal of Mass Spectrometry</i> , 2003 , 38, 1075-80	2.2	17
96	Pentavalent organoantimonial derivatives: two simple and efficient synthetic methods for meglumine antimonate. <i>Applied Organometallic Chemistry</i> , 2003 , 17, 226-231	3.1	31
95	Iridoid glucosides from Randia spinosa (Rubiaceae). <i>Phytochemistry</i> , 2003 , 63, 397-400	4	31
94	Reactions of gaseous halocarbonyl cations with aromatic compounds: ionic carbonylation of inert C?H bonds. <i>International Journal of Mass Spectrometry</i> , 2003 , 228, 901-912	1.9	10
93	Regioselectivity in aromatic Claisen rearrangements. Journal of Organic Chemistry, 2003, 68, 5493-9	4.2	48
92	New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides. <i>Journal of Natural Products</i> , 2003 , 66, 1384-7	4.9	40
91	Turbinatine, a potential key intermediate in the biosynthesis of corynanthean-type indole alkaloids. <i>Journal of Natural Products</i> , 2003 , 66, 1017-21	4.9	22
90	Eudesmanolides from Dimerostemma vestitum. <i>Journal of Natural Products</i> , 2003 , 66, 401-3	4.9	9
89	Quantitation of isomeric ethyl pyridine mixtures by multivariate calibration applied to ion-molecule reaction/collision-induced dissociation triple-stage mass spectra. <i>Talanta</i> , 2003 , 60, 37-44	6.2	6
88	Ionic transacetalization with acylium ions: a class-selective and structurally diagnostic reaction for cyclic acetals performed under unique electrospray and atmospheric pressure chemical ionization in-source ion-molecule reaction conditions. <i>Analytical Chemistry</i> , 2003 , 75, 4701-9	7.8	40
87	Probing the mechanism of the Petasis olefination reaction by atmospheric pressure chemical ionization mass and tandem mass spectrometry. <i>Organic Letters</i> , 2003 , 5, 1391-4	6.2	60
86	Ion/molecule reactions performed in a miniature cylindrical ion trap mass spectrometer. <i>Analyst, The,</i> 2003 , 128, 1112-8	5	25
85	Gas phase chemistry of the 2-tert-butyl-3-phenylphosphirenylium cation: novel onium ions by nucleophilic attack at phosphorus and de novo P-spiro bicyclic phosphonium ions via [4 + 2+] cycloaddition with dienes. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 395-400	3.9	13
84	Solid phase micro-extraction in a miniature ion trap mass spectrometer. <i>Analyst, The</i> , 2003 , 128, 1119-	22 5	24
83	Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. <i>Journal of Biological Chemistry</i> , 2003 , 278, 8547-55	5.4	126

82	Chiral Transmission between Amino Acids: Chirally Selective Amino Acid Substitution in the Serine Octamer as a Possible Step in Homochirogenesis. <i>Angewandte Chemie</i> , 2002 , 114, 1797-1800	3.6	21
81	Chiral transmission between amino acids: chirally selective amino acid substitution in the serine octamer as a possible step in homochirogenesis. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1721-4	16.4	104
80	Mono and double polar [4 + 2(+)] Diels-Alder cycloaddition of acylium ions with O-heterodienes. Journal of Mass Spectrometry, 2002 , 37, 146-54	2.2	14
79	Structurally diagnostic ion-molecule reactions: acylium ions with alpha-, beta- and gamma-hydroxy ketones. <i>Journal of Mass Spectrometry</i> , 2002 , 37, 162-8	2.2	20
78	Ortho Effects in the Dissociation of Ionized N-Chlorophenyl- and N-Bromophenyl-2-Aminobenzamidines: Intramolecular Aromatic Substitution with Cyclization to Protonated 2-(2-Aminophenyl)-1H-Benzimidazoles. <i>European Journal of Mass Spectrometry</i> , 2002 , 8, 27-3	1.1 33	5
77	Mannich-type reactions in the gas-phase: the addition of enol silanes to cyclic N-acyliminium ions. Journal of Organic Chemistry, 2002 , 67, 4652-8	4.2	28
76	Fiber introduction mass spectrometry: fully direct coupling of solid-phase microextraction with mass spectrometry. <i>Analytical Chemistry</i> , 2002 , 74, 5688-92	7.8	26
75	Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes. <i>Analytical Chemistry</i> , 2002 , 74, 5470-9	7.8	250
74	Direct sampling tandem mass spectrometry (MS/MS) and multiway calibration for isomer quantitation. <i>Analyst, The</i> , 2002 , 127, 1054-60	5	23
73	Water solubilization of ethanol and BTEX from gasoline: on-line monitoring by membrane introduction mass spectrometry. <i>Analyst, The</i> , 2002 , 127, 230-234	5	46
72	Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry. <i>Analyst, The</i> , 2002 , 127, 1050-3	5	63
71	Gas-phase polar [4++2] cycloaddition of cationic 2-azabutadienes with enol ethers. <i>International Journal of Mass Spectrometry</i> , 2001 , 210-211, 469-482	1.9	12
70	Cyclization of acylium ions with nitriles: gas-phase synthesis and characterization of 1,3,5-oxadiazinium ions. <i>International Journal of Mass Spectrometry</i> , 2001 , 212, 445-454	1.9	21
69	Transacetalization with gaseous carboxonium and carbosulfonium ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2001 , 12, 14-22	3.5	18
68	Ketalization of gaseous acylium ions. <i>Journal of the American Society for Mass Spectrometry</i> , 2001 , 12, 150-62	3.5	33
67	Electron ionization mass spectra of bis-1,2,4-oxadiazoles: tandem mass spectrometry and accurate mass measurements. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 884-8	2.2	2
66	Determination of RSD921 in human plasma by high-performance liquid chromatography-tandem mass spectrometry using tri-deuterated RSD921 as internal standard: application to a phase I clinical trial. <i>Journal of Mass Spectrometry</i> , 2001 , 36, 1133-9	2.2	2
65	Primary and secondary kinetic isotope effects in proton (H(+)/D(+)) and chloronium ion ((35)Cl(+)/(37)Cl(+)) affinities. <i>Journal of Mass Spectrometry</i> , 2001 , 36, 1140-8	2.2	21

(2000-2001)

64	Multivariate curve resolution applied to MS/MS data obtained from isomeric mixtures. <i>Analytica Chimica Acta</i> , 2001 , 446, 493-500	6.6	9
63	Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UVI/IS. <i>Applied Catalysis B: Environmental</i> , 2001 , 30, 389-397	21.8	59
62	Intrinsic gas-phase electrophilic reactivity of cyclic N-alkyl- and N-acyliminium ions. <i>Journal of Organic Chemistry</i> , 2001 , 66, 3854-64	4.2	36
61	Selective trace level analysis of phenolic compounds in water by flow injection analysismembrane introduction mass spectrometry. <i>Environmental Science & Environmental Scie</i>	10.3	29
60	Chiroselective self-directed octamerization of serine: implications for homochirogenesis. <i>Analytical Chemistry</i> , 2001 , 73, 3646-55	7.8	221
59	Serine octamer metaclusters: formation, structure elucidation and implications for homochiral polymerization. <i>Chemical Communications</i> , 2001 , 1854-5	5.8	51
58	Amino acid quantitation in aqueous matrices via trap and release membrane introduction mass spectrometry: homocysteine in human plasma. <i>Analyst, The</i> , 2001 , 126, 1212-5	5	28
57	Gas-Phase Synthesis and Characterization of an Azaphosphirenium Ion: The First N,P-Analogue of the Aromatic Cyclopropenyl Cation. <i>Organometallics</i> , 2001 , 20, 4863-4868	3.8	11
56	Formal fusion of a pyrrole ring onto 2-pyridyl and 2-pyrimidyl cations: one-step gas-phase synthesis of indolizine and its derivatives. <i>Chemistry - A European Journal</i> , 2000 , 6, 321-6	4.8	21
55	The gas-phase Meerwein reaction. <i>Chemistry - A European Journal</i> , 2000 , 6, 897-905	4.8	24
54	Double transacetalization of diacylium ions. <i>Journal of Mass Spectrometry</i> , 2000 , 35, 189-98	2.2	16
53	Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. <i>Journal of the American Society for Mass Spectrometry</i> , 2000 , 11, 526-35	3.5	101
52	Acyclic distonic acylium ions: dual free radical and acylium ion reactivity in a single molecule. Journal of the American Society for Mass Spectrometry, 2000 , 11, 697-704	3.5	17
51	Trace level analysis of VOCs and semi-VOCs in aqueoussolution using a direct insertion membrane probe and trap and releasemembrane introduction mass spectrometry. <i>Analyst, The</i> , 2000 , 125, 21-24	5	35
50	The First Nonclassical Distonic Ion. <i>Journal of the American Chemical Society</i> , 2000 , 122, 7776-7780	16.4	13
49	Gaseous SF(3)(+): An efficient electrophilic monofluorinating agent for five-membered heteroaromatic compounds. <i>Journal of Organic Chemistry</i> , 2000 , 65, 3920-5	4.2	28
48	A new method for the selective quantitation of cyanogenic glycosides by membrane introduction mass spectrometry. <i>Analyst, The</i> , 2000 , 125, 1529-1531	5	9
47	Structural Characterization of Clusters Formed from Alkyl Nitriles and the Methyl Cation. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11290-11296	2.8	8

46	Headspace membrane introduction mass spectrometry for trace level analysis of VOCs in soil and other solid matrixes. <i>Analytical Chemistry</i> , 2000 , 72, 2166-70	7.8	33
45	Gas-phase chemistry of acylium ions. Seven-to-five ring contraction of 1,3-dioxepane and 1,3-dioxep-5-ene. <i>Journal of Mass Spectrometry</i> , 1999 , 34, 670-676	2.2	11
44	Photocatalytic Degradation of Phenol and Trichloroethylene: On-Line and Real-Time Monitoring via Membrane Introduction Mass Spectrometry. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 1754-1758	3.9	33
43	PolyetherimideBilicone: a 10 µm ultrathin composite membrane for faster and more sensitive membrane introduction mass spectrometry analysis. <i>Analytical Communications</i> , 1999 , 36, 221-223		16
42	2-Pyridyl and 2-Pyrimidyl Cations:´Stableo-Hetarynium Ions in the Gas Phase Journal of Organic Chemistry, 1999 , 64, 2188-2193	4.2	24
41	Synthesis of B- and P-Heterocycles by Reaction of Cyclic Acetals and Ketals with Borinium and Phosphonium Ions. <i>Journal of Organic Chemistry</i> , 1999 , 64, 3213-3223	4.2	25
40	Destruction of Malodorous Compounds Using Heterogeneous Photocatalysis. <i>Environmental Science & Environmental Science & Envir</i>	10.3	52
39	Locating the Charge Site in Heteroaromatic Cations. Chemistry - A European Journal, 1998, 4, 1161-1168	4.8	36
38	Gas phase agostic bonding in pyridine SiFn+ (n = 1, 3) cluster ions investigated by the kinetic method. <i>International Journal of Mass Spectrometry</i> , 1998 , 179-180, 195-205	1.9	10
37	Mass spectrometry on-line monitoring and MS2 product characterization of TiO2/UV photocatalytic degradation of chlorinated volatile organic compounds. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 1321-1327	3.5	36
36	Gas-Phase Chemistry of the Sulfur Hexafluoride Fragment Ions SFn+ (n = 0 B) and SFn2+ (n = 2 , 4). Ab Initio Thermochemistry of Novel Reactions of S+ \Box and SF+. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 5189-5195	2.8	16
35	Dehydrobenzoyl Cations: Distonic Ions with Dual Free Radical and Acylium Ion Reactivity. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11136-11143	16.4	29
34	Oxygen Atom Transfer to Positive Ions: A Novel Reaction of Ozone in the Gas Phase. <i>Journal of the American Chemical Society</i> , 1998 , 120, 7869-7874	16.4	14
33	The Simplest Azabutadienes in Their N-Protonated Forms. Generation, Stability, and Cycloaddition Reactivity in the Gas Phase. <i>Journal of Organic Chemistry</i> , 1998 , 63, 4889-4897	4.2	24
32	Transacetalization of 1,3-dioxane with acylium and sulfinyl cations in the gas phase. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1997 , 2105-2111		17
31	Gas phase chemistry of the heterocumulene cations OCN+CO and OCCN+O. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1997 , 2347-2352		17
30	Transacetalization with Acylium Ions. A Structurally Diagnostic Ion/Molecule Reaction for Cyclic Acetals and Ketals in the Gas Phase. <i>Journal of Organic Chemistry</i> , 1997 , 62, 5096-5103	4.2	51
29	Novel [3 + 2] 1,3-Cycloaddition of the Ionized Carbonyl Ylide +CH2OCH2\(\text{Iwith Carbonyl Compounds}\) in the Gas Phase. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3550-3557	16.4	23

28	Sulfur trifluoride cation (SF3+) affinities of pyridines determined by the kinetic method: Stereoelectronic effects in the gas phase. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 68-75	3.5	19
27	Stereoelectronic effects in phosphorus dichloride cation/pyridine complexes. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1997 , 163, 89-99		13
26	Triple-stage pentaquadrupole (QqQqQ) mass spectrometry and ion/molecule reactions. <i>Mass Spectrometry Reviews</i> , 1997 , 16, 113-144	11	103
25	On the structure of the m/z 70 ions from N-H- and N-Br-succinimide: O=C=N=C=O+?. <i>Journal of Mass Spectrometry</i> , 1997 , 32, 1137-1139	2.2	6
24	A Cryotrap Membrane Introduction Mass Spectrometry System for Analysis of Volatile Organic Compounds in Water at the Low Parts-per-Trillion Level. <i>Analytical Chemistry</i> , 1996 , 68, 3502-6	7.8	64
23	Fast Multidimensional (3D and 4D) MS2 and MS3 Scans in a High-Transmission Pentaquadrupole Mass Spectrometer. <i>Analytical Chemistry</i> , 1996 , 68, 1328-1334	7.8	83
22	Novel Ketalization Reaction of Acylium Ions with Diols and Analogues in the Gas Phase. <i>Journal of Organic Chemistry</i> , 1996 , 61, 8726-8727	4.2	35
21	The generation, stability, dissociation and ion/molecule chemistry of sulfinyl cations in the gas phase. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1996 , 587		19
20	Multiple stage pentaquadrupole mass spectrometry for generation and characterization of gas-phase ionic species. The case of the PyC2H 5 (+•) isomers. <i>Journal of the American Society for Mass Spectrometry</i> , 1996 , 7, 1126-37	3.5	30
19	Polar [4+2(+)] diels-alder cycloaddition to nitrilium and immonium ions in the gas phase: Applications of multiple stage mass spectrometry in a pentaquadrupole instrument. <i>Journal of the American Society for Mass Spectrometry</i> , 1995 , 6, 1-10	3.5	25
18	The ionized methylene transfer from the distonic radical cation (+)CH 2-O-CH 2 to heterocyclic compounds. A pentaquadrupole mass spectrometric study. <i>Journal of the American Society for Mass Spectrometry</i> , 1995 , 6, 554-63	3.5	22
17	Reactions of carbethoxycarbene with enaminones. Formation of unexpected pyrroles. <i>Journal of Heterocyclic Chemistry</i> , 1995 , 32, 1355-1357	1.9	15
16	Normal and inverse electron demand Diels Alder cycloaddition of protonated and methylated carbonyl compounds in the gas phase. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 581-594	2.2	11
15	Relative carbonyl isocyanate cation [OCNCO]+ affinities of pyridines determined by the kinetic method using multiple-stage (MS3) mass spectrometry. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 807-816	5 ^{2.2}	39
14	The isomers of ionized dimethyl sulfoxide (C2H6OS+) and their CH3OS+ fragments. An ab initio and multiple-stage mass spectrometric (MSn) study. <i>Journal of Mass Spectrometry</i> , 1995 , 30, 1553-1561	2.2	17
13	Gas-Phase Cl+ Affinities of Pyridines Determined by the Kinetic Method Using Multiple-Stage (MS3) Mass Spectrometry. <i>Journal of the American Chemical Society</i> , 1994 , 116, 2457-2465	16.4	62
12	Polar [4 + 2+] Diels-Alder cycloadditions of acylium ions in the gas phase. <i>Journal of the American Chemical Society</i> , 1993 , 115, 9226-9233	16.4	56
11	Electrophilic aromatic chlorine cation (Cl+) addition and CO.bul.+ substitution in the gas phase. Journal of the American Chemical Society, 1993, 115, 1004-1014	16.4	47

10	Gas-phase oxirane addition to acylium ions on reaction with 1,3-dioxolanes elucidated by tandem and triple stage mass spectrometric experiments. <i>Organic Mass Spectrometry</i> , 1993 , 28, 679-687		49
9	Structures and mechanisms of reactions of isomeric C2H3O+ and C2H3S+ ions revealed through ion/molecule reactions in conjunction with 2D and 3D mass spectrometry. <i>Journal of the American Chemical Society</i> , 1992 , 114, 2884-2896	16.4	54
8	Ion-molecule reactions and collision-activated dissociation of C4H 4 (+.) isomers: A case study in the use of the MS (3) capabilities of a pentaquadrupole mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 518-34	3.5	38
7	Quadrupole ion trap mass spectrometry of fullerenes. <i>Organic Mass Spectrometry</i> , 1992 , 27, 284-288		10
6	Structural studies on alkylisocyanate polymers by thermal degradation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 1991 , 2, 130-48	3.5	13
5	Determination of lead(II) by argentimetry. <i>Talanta</i> , 1991 , 38, 213-5	6.2	1
5	Determination of lead(II) by argentimetry. <i>Talanta</i> , 1991 , 38, 213-5 The use of AM1 in structural analyses of primary and secondary enaminones. <i>Computational and Theoretical Chemistry</i> , 1990 , 207, 143-156	6.2	17
	The use of AM1 in structural analyses of primary and secondary enaminones. <i>Computational and</i>	6.2 4.2	
4	The use of AM1 in structural analyses of primary and secondary enaminones. <i>Computational and Theoretical Chemistry</i> , 1990 , 207, 143-156 Experimental and theoretical study of the reactivity of primary and secondary enaminones toward diphenylketene. A comparison of AM1 and HAM/3 semiempirical methods. <i>Journal of Organic</i>		17