Jane A Endicott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 6513-6540.	6.4	3
2	Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. Journal of Molecular Biology, 2021, 433, 166795.	4.2	10
3	Structure-Based Design of Potent and Orally Active Isoindolinone Inhibitors of MDM2-p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 4071-4088.	6.4	30
4	An Alkynylpyrimidine-Based Covalent Inhibitor That Targets a Unique Cysteine in NF-κB-Inducing Kinase. Journal of Medicinal Chemistry, 2021, 64, 10001-10018.	6.4	9
5	Chatterboxes: the structural and functional diversity of cyclins. Seminars in Cell and Developmental Biology, 2020, 107, 4-20.	5.0	11
6	Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4. European Journal of Medicinal Chemistry, 2019, 178, 530-543.	5.5	15
7	FragLites—Minimal, Halogenated Fragments Displaying Pharmacophore Doublets. An Efficient Approach to Druggability Assessment and Hit Generation. Journal of Medicinal Chemistry, 2019, 62, 3741-3752.	6.4	62
8	Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition. Cell Chemical Biology, 2019, 26, 121-130.e5.	5.2	72
9	Identification of a novel ligand for the ATAD2 bromodomain with selectivity over BRD4 through a fragment growing approach. Organic and Biomolecular Chemistry, 2018, 16, 1843-1850.	2.8	15
10	Structural insights into the functional diversity of the CDK–cyclin family. Open Biology, 2018, 8, .	3.6	156
11	Cyclin-Dependent Kinase (CDK) Inhibitors: Structure–Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. Journal of Medicinal Chemistry, 2017, 60, 1746-1767.	6.4	77
12	Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System. Cell Reports, 2017, 21, 1386-1398.	6.4	49
13	Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays in Biochemistry, 2017, 61, 439-452.	4.7	39
14	CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nature Communications, 2015, 6, 6769.	12.8	145
15	Identification and Characterization of an Irreversible Inhibitor of CDK2. Chemistry and Biology, 2015, 22, 1159-1164.	6.0	85
16	8-Substituted <i>O</i> ⁶ -Cyclohexylmethylguanine CDK2 Inhibitors: Using Structure-Based Inhibitor Design to Optimize an Alternative Binding Mode. Journal of Medicinal Chemistry, 2014, 57, 56-70.	6.4	15
17	An Inhibitor's-Eye View of the ATP-Binding Site of CDKs in Different Regulatory States. ACS Chemical Biology, 2014, 9, 1251-1256.	3.4	27
18	A Code for RanGDP Binding in Ankyrin Repeats Defines a Nuclear Import Pathway. Cell, 2014, 157, 1130-1145.	28.9	67

#	Article	IF	CITATIONS
19	Structural characterization of the cyclin-dependent protein kinase family. Biochemical Society Transactions, 2013, 41, 1008-1016.	3.4	35
20	The structure of an MDM2–Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1358-1366.	2.5	59
21	Comparative Structural and Functional Studies of 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 Inhibitors Suggest the Basis for Isotype Selectivity. Journal of Medicinal Chemistry, 2013, 56, 660-670.	6.4	51
22	Restoring p53 Function in Human Melanoma Cells by Inhibiting MDM2 and Cyclin B1/CDK1-Phosphorylated Nuclear iASPP. Cancer Cell, 2013, 23, 618-633.	16.8	136
23	Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, Structure–Activity Relationship, and Anticancer Activities. Journal of Medicinal Chemistry, 2013, 56, 640-659.	6.4	111
24	Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochemical Journal, 2012, 448, 55-65.	3.7	23
25	The Ubiquitin-associated (UBA) 1 Domain of Schizosaccharomyces pombe Rhp23 Is Essential for the Recognition of Ubiquitin-proteasome System Substrates Both in Vitro and in Vivo*. Journal of Biological Chemistry, 2012, 287, 42344-42351.	3.4	5
26	The CDK9 Tail Determines the Reaction Pathway of Positive Transcription Elongation Factor b. Structure, 2012, 20, 1788-1795.	3.3	32
27	The CDK9 C-helix Exhibits Conformational Plasticity That May Explain the Selectivity of CAN508. ACS Chemical Biology, 2012, 7, 811-816.	3.4	45
28	The Structural Basis for Control of Eukaryotic Protein Kinases. Annual Review of Biochemistry, 2012, 81, 587-613.	11.1	362
29	Understanding Smallâ€Molecule Binding to MDM2: Insights into Structural Effects of Isoindolinone Inhibitors from NMR Spectroscopy. Chemical Biology and Drug Design, 2011, 77, 301-308.	3.2	15
30	MDM2-p53 protein–protein interaction inhibitors: A-ring substituted isoindolinones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5916-9.	2.2	36
31	Isoindolinone Inhibitors of the Murine Double Minute 2 (MDM2)-p53 Proteinâ^'Protein Interaction: Structureâ^'Activity Studies Leading to Improved Potency. Journal of Medicinal Chemistry, 2011, 54, 1233-1243.	6.4	130
32	Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 511-519.	2.3	96
33	Halogen Bonds Form the Basis for Selective P-TEFb Inhibition by DRB. Chemistry and Biology, 2010, 17, 931-936.	6.0	90
34	A new crystal form of Lys48-linked diubiquitin. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 994-998.	0.7	26
35	Structure of Rpn10 and Its Interactions with Polyubiquitin Chains and the Proteasome Subunit Rpn12*. Journal of Biological Chemistry, 2010, 285, 33992-34003.	3.4	61
36	CDK Inhibitors Roscovitine and CR8 Trigger Mcl-1 Down-Regulation and Apoptotic Cell Death in Neuroblastoma Cells. Genes and Cancer, 2010, 1, 369-380.	1.9	67

#	Article	IF	CITATIONS
37	The structure of CDK4/cyclin D3 has implications for models of CDK activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4171-4176.	7.1	102
38	CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene, 2008, 27, 5797-5807.	5.9	165
39	Structures of P. falciparum Protein Kinase 7 Identify an Activation Motif and Leads for Inhibitor Design. Structure, 2008, 16, 228-238.	3.3	62
40	Meriolins (3-(Pyrimidin-4-yl)-7-azaindoles): Synthesis, Kinase Inhibitory Activity, Cellular Effects, and Structure of a CDK2/Cyclin A/Meriolin Complex. Journal of Medicinal Chemistry, 2008, 51, 737-751.	6.4	144
41	Analysis of Chemical Shift Changes Reveals the Binding Modes of Isoindolinone Inhibitors of the MDM2-p53 Interaction. Journal of the American Chemical Society, 2008, 130, 16038-16044.	13.7	102
42	N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine. Molecular Cancer Therapeutics, 2008, 7, 2713-2724.	4.1	51
43	Meriolins, a New Class of Cell Death–Inducing Kinase Inhibitors with Enhanced Selectivity for Cyclin-Dependent Kinases. Cancer Research, 2007, 67, 8325-8334.	0.9	103
44	How Tyrosine 15 Phosphorylation Inhibits the Activity of Cyclin-dependent Kinase 2-Cyclin A. Journal of Biological Chemistry, 2007, 282, 3173-3181.	3.4	85
45	Structure-based design of 2-arylamino-4-cyclohexylmethoxy-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinase 2. Organic and Biomolecular Chemistry, 2007, 5, 1577.	2.8	16
46	Pass the protein. Nature, 2007, 445, 375-376.	27.8	0
47	Searching for Cyclin-Dependent Kinase Inhibitors Using a New Variant of the Cope Elimination. Journal of the American Chemical Society, 2006, 128, 6012-6013.	13.7	64
48	Dissecting the Determinants of Cyclin-Dependent Kinase 2 and Cyclin-Dependent Kinase 4 Inhibitor Selectivityâ€. Journal of Medicinal Chemistry, 2006, 49, 5470-5477.	6.4	39
49	Structures of the Dsk2 UBL and UBA domains and their complex. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 177-188.	2.5	69
50	Methods for Preparation of Proteins and Protein Complexes That Regulate the Eukaryotic Cell Cycle for Structural Studies. , 2005, 296, 219-236.		13
51	Exploiting structural principles to design cyclin-dependent kinase inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 58-64.	2.3	27
52	Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 132-150.	2.3	78
53	Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. EMBO Journal, 2005, 24, 3178-3189.	7.8	87
54	Molecular Basis for the Recognition of Phosphorylated and Phosphoacetylated Histone H3 by 14-3-3. Molecular Cell, 2005, 20, 199-211.	9.7	220

#	Article	IF	CITATIONS
55	Budding yeast Dsk2 protein forms a homodimer via its C-terminal UBA domain. Biochemical and Biophysical Research Communications, 2005, 336, 530-535.	2.1	28
56	Inhibition of the cell cycle with chemical inhibitors: A targeted approach. Seminars in Cell and Developmental Biology, 2005, 16, 369-381.	5.0	13
57	N2-SubstitutedO6-Cyclohexylmethylguanine Derivatives:Â Potent Inhibitors of Cyclin-Dependent Kinases 1 and 2. Journal of Medicinal Chemistry, 2004, 47, 3710-3722.	6.4	116
58	Protein Kinase Inhibitors: Insights into Drug Design from Structure. Science, 2004, 303, 1800-1805.	12.6	1,164
59	Structural biology of cell-cycle proteins. Drug Discovery Today: TARGETS, 2004, 3, 136-142.	0.5	2
60	The role of structure in kinase-targeted inhibitor design. Current Opinion in Drug Discovery & Development, 2004, 7, 428-36.	1.9	6
61	Aloisines, a New Family of CDK/GSK-3 Inhibitors. SAR Study, Crystal Structure in Complex with CDK2, Enzyme Selectivity, and Cellular Effects. Journal of Medicinal Chemistry, 2003, 46, 222-236.	6.4	139
62	Structures of P. falciparum PfPK5 Test the CDK Regulation Paradigm and Suggest Mechanisms of Small Molecule Inhibition. Structure, 2003, 11, 1329-1337.	3.3	91
63	4-Alkoxy-2,6-diaminopyrimidine derivatives: inhibitors of cyclin dependent kinases 1 and 2. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 217-222.	2.2	54
64	Structure-Based design of 2-Arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-Dependent kinases 1 and 2. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3079-3082.	2.2	69
65	A procedure for setting up high-throughput nanolitre crystallization experiments. II. Crystallization results. Journal of Applied Crystallography, 2003, 36, 315-318.	4.5	43
66	Cyclin-dependent kinase inhibitors. Progress in Cell Cycle Research, 2003, 5, 235-48.	0.9	31
67	Probing the ATP Ribose-Binding Domain of Cyclin-Dependent Kinases 1 and 2 withO6-Substituted Guanine Derivatives. Journal of Medicinal Chemistry, 2002, 45, 3381-3393.	6.4	90
68	Cyclin-dependent kinase homologues of Plasmodium falciparum. International Journal for Parasitology, 2002, 32, 1575-1585.	3.1	71
69	Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. , 2002, 93, 113-124.		61
70	Structure-based design of cyclin-dependent kinase inhibitors. , 2002, 93, 125-133.		96
71	Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor. Nature Structural Biology, 2002, 9, 745-749.	9.7	198
72	Xenopus Phospho-CDK7/Cyclin H Expressed in Baculoviral-Infected Insect Cells. Protein Expression and Purification, 2001, 23, 252-260.	1.3	4

#	Article	IF	CITATIONS
73	Inhibitor Binding to Active and Inactive CDK2. Structure, 2001, 9, 389-397.	3.3	137
74	Identification of Novel Purine and Pyrimidine Cyclin-Dependent Kinase Inhibitors with Distinct Molecular Interactions and Tumor Cell Growth Inhibition Profiles. Journal of Medicinal Chemistry, 2000, 43, 2797-2804.	6.4	203
75	Cyclin-Dependent Kinase Inhibition by New C-2 Alkynylated Purine Derivatives and Molecular Structure of a CDK2â''Inhibitor Complex. Journal of Medicinal Chemistry, 2000, 43, 1282-1292.	6.4	86
76	Effects of Phosphorylation of Threonine 160 on Cyclin-dependent Kinase 2 Structure and Activity. Journal of Biological Chemistry, 1999, 274, 8746-8756.	3.4	198
77	The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biology, 1999, 1, 438-443.	10.3	509
78	Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biology, 1999, 1, 60-67.	10.3	752
79	Chemical Inhibitors of Cyclin-Dependent Kinases. , 1999, 82, 269-278.		33
80	Cyclin-dependent kinases: inhibition and substrate recognition. Current Opinion in Structural Biology, 1999, 9, 738-744.	5.7	109
81	Structural principles in cell-cycle control: beyond the CDKs. Structure, 1998, 6, 535-541.	3.3	14
82	Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nature Structural Biology, 1997, 4, 796-801.	9.7	243
83	The cyclin box fold: protein recognition in cell-cycle and transcription control. Trends in Biochemical Sciences, 1997, 22, 482-487.	7.5	105
84	Complete cDNA sequences encoding the Chinese hamster P-glycoprotein gene family. DNA Sequence, 1991, 2, 89-101.	0.7	60
85	THE BIOCHEMISTRY OF P-GLYCOPROTEIN-MEDIATED MULTIDRUG RESISTANCE. Annual Review of Biochemistry, 1989, 58, 137-171.	11.1	2,051
86	Multidrug Resistance and P-Glycoprotein Expression. , 1988, , 197-209.		9
87	Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature, 1986, 324, 485-489.	27.8	677