## And Maide Bucolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511252/publications.pdf Version: 2024-02-01



AND MAIDE BUCOLO

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nyquist Plots for MIMO Systems Under Frequency Transformations. , 2022, 6, 169-174.                                                                                                                                        |     | 6         |
| 2  | Micro-Optical Waveguides Realization by Low-Cost Technologies. Micro, 2022, 2, 123-136.                                                                                                                                    | 2.0 | 5         |
| 3  | Remote Ultrasound Scan Procedures with Medical Robots: Towards New Perspectives between Medicine and Engineering. Applied Bionics and Biomechanics, 2022, 2022, 1-12.                                                      | 1.1 | 9         |
| 4  | Model Identification to Validate Printed Circuit Boards for Power Applications: A New Technique. IEEE<br>Access, 2022, 10, 31760-31774.                                                                                    | 4.2 | 4         |
| 5  | Projection micro-stereolithography versus master–slave approach to manufacture a<br>micro-optofluidic device for slug flow detection. International Journal of Advanced Manufacturing<br>Technology, 2022, 120, 4443-4460. | 3.0 | 8         |
| 6  | 3D Printing Manufacturing of Polydimethyl-Siloxane/Zinc Oxide Micro-Optofluidic Device for<br>Two-Phase Flows Control. Polymers, 2022, 14, 2113.                                                                           | 4.5 | 3         |
| 7  | Nyquist plots under frequency transformations: the discrete-time case. , 2022, , 1-1.                                                                                                                                      |     | Ο         |
| 8  | A New Asymptotic Stability Criterion for Linear Discrete-time Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, , 1-1.                                                                          | 3.0 | 0         |
| 9  | Can Noise in the Feedback Improve the Performance of a Control System?. Journal of the Physical Society of Japan, 2021, 90, 075002.                                                                                        | 1.6 | 23        |
| 10 | Imperfections in Integrated Devices Allow the Emergence of Unexpected Strange Attractors in Electronic Circuits. IEEE Access, 2021, 9, 29573-29583.                                                                        | 4.2 | 55        |
| 11 | Reviewing Bioinspired Technologies for Future Trends: A Complex Systems Point of View. Frontiers in Physics, 2021, 9, .                                                                                                    | 2.1 | 10        |
| 12 | A Comparative Analysis of Computer-Aided Design Tools for Complex Power Electronics Systems.<br>Energies, 2021, 14, 7729.                                                                                                  | 3.1 | 5         |
| 13 | Chaos Addresses Energy in Networks of Electrical Oscillators. IEEE Access, 2021, 9, 153258-153265.                                                                                                                         | 4.2 | 12        |
| 14 | Ebatronics: A New Paradigm for Experimental Laboratory in Applied Science and Technology. The Physics Educator, 2021, 03, .                                                                                                | 0.4 | 3         |
| 15 | Automation of the Leonardo da Vinci Machines. Machines, 2020, 8, 53.                                                                                                                                                       | 2.2 | 13        |
| 16 | A New Time-Delay Model for Chaotic Glucose-Insulin Regulatory System. International Journal of<br>Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050178.                                            | 1.7 | 2         |
| 17 | Bifurcation scenarios for pilot induced oscillations. Aerospace Science and Technology, 2020, 106, 106194.                                                                                                                 | 4.8 | 15        |
| 18 | Force Feedback Assistance in Remote Ultrasound Scan Procedures. Energies, 2020, 13, 3376.                                                                                                                                  | 3.1 | 14        |

AND MAIDE BUCOLO

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hankel Singular Values and LQG Characteristic Values of Discrete-Time Linear Systems in Cascade With<br>Inner Systems. IEEE Transactions on Automatic Control, 2020, 65, 4989-4994.            | 5.7 | 3         |
| 20 | Multiple Hysteresis Jump Resonance in a Class of Forced Nonlinear Circuits and Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050258. | 1.7 | 12        |
| 21 | 3D-Printed micro-optofluidic device for chemical fluids and cells detection. Biomedical Microdevices, 2020, 22, 37.                                                                            | 2.8 | 13        |
| 22 | Real-Time Detection of Slug Velocity in Microchannels. Micromachines, 2020, 11, 241.                                                                                                           | 2.9 | 23        |
| 23 | Stochastic Resonance in Electromechanical Vibrating Systems. Journal of the Physical Society of Japan, 2020, 89, 115001.                                                                       | 1.6 | 3         |
| 24 | A Real Time Feed Forward Control of Slug Flow in Microchannels â€. Energies, 2019, 12, 2556.                                                                                                   | 3.1 | 20        |
| 25 | Control of imperfect dynamical systems. Nonlinear Dynamics, 2019, 98, 2989-2999.                                                                                                               | 5.2 | 112       |
| 26 | Forward action to make time-delay systems positive-real or negative-imaginary. Systems and Control<br>Letters, 2019, 131, 104495.                                                              | 2.3 | 3         |
| 27 | Turing patterns in the simplest MCNN. Nonlinear Theory and Its Applications IEICE, 2019, 10, 390-398.                                                                                          | 0.6 | 3         |
| 28 | Nonlinear systems synchronization for modeling two-phase microfluidics flows. Nonlinear Dynamics, 2018, 92, 75-84.                                                                             | 5.2 | 27        |
| 29 | Quantitative analysis of spatial irregularities in RBCs flows. Chaos, Solitons and Fractals, 2018, 115, 349-355.                                                                               | 5.1 | 5         |
| 30 | Micro-optofluidic switch realized by 3D printing technology. Microfluidics and Nanofluidics, 2016, 20, 1.                                                                                      | 2.2 | 28        |
| 31 | Experimental study on the slug flow in a serpentine microchannel. Experimental Thermal and Fluid<br>Science, 2016, 76, 34-44.                                                                  | 2.7 | 34        |
| 32 | Computational models in microfluidic bubble logic. Microfluidics and Nanofluidics, 2015, 18, 305-321.                                                                                          | 2.2 | 32        |
| 33 | Which method should be used for brain connectivity analysis?. , 2013, , .                                                                                                                      |     | 2         |
| 34 | Experimental classification of nonlinear dynamics in microfluidic bubbles' flow. Nonlinear Dynamics, 2012, 67, 2807-2819.                                                                      | 5.2 | 24        |
| 35 | A polymeric micro-optical system for the spatial monitoring in two-phase microfluidics. Microfluidics and Nanofluidics, 2012, 12, 165-174.                                                     | 2.2 | 30        |
| 36 | Periodic input flows tuning nonlinear two-phase dynamics in a snake microchannel. Microfluidics and Nanofluidics, 2011, 11, 189-197.                                                           | 2.2 | 22        |

AND MAIDE BUCOLO

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A polymeric micro-optical interface for flow monitoring in biomicrofluidics. Biomicrofluidics, 2010,<br>4, 024108.                                                                                  | 2.4 | 16        |
| 38 | Bio-Microfluidics Real-Time Monitoring Using CNN Technology. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 78-87.                                                                  | 4.0 | 20        |
| 39 | An Improved Instrument for Real-Time Measurement of Blood Flow Velocity in Microvessels. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2663-2671.                                 | 4.7 | 22        |
| 40 | FROM LOCAL ACTIVITY LEMMA BEYOND THE WAVE COMPUTATION REACTION–DIFFUSION CNN BASED NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 411-417. | 1.7 | 5         |
| 41 | THE CNN PARADIGM: SHAPES AND COMPLEXITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2063-2090.                                                   | 1.7 | 103       |
| 42 | CNN-based trajectory analysis of flagellar bacteria for nanoscale motion control. International<br>Journal of Circuit Theory and Applications, 2004, 32, 439-446.                                   | 2.0 | 0         |
| 43 | Spatial Disorder in Complex Neuro-Fuzzy Dynamics. Progress of Theoretical Physics Supplement, 2000, 139, 445-452.                                                                                   | 0.1 | 1         |
| 44 | LQG control of linear lossless positive-real systems: the continuous-time and discrete-time cases.<br>International Journal of Dynamics and Control, 0, , 1.                                        | 2.5 | 3         |
| 45 | The generalized Letov formula for MIMO not-strictly proper systems. International Journal of Dynamics and Control, 0, , 1.                                                                          | 2.5 | 1         |
| 46 | Generalizing the Letov formula for the discrete-time case. International Journal of Dynamics and<br>Control, 0, , .                                                                                 | 2.5 | 2         |