
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opioids and the immune system – friend or foe. British Journal of Pharmacology, 2018, 175, 2717-2725.	5.4	301
2	Barrier function in the peripheral and central nervous system—a review. Pflugers Archiv European Journal of Physiology, 2017, 469, 123-134.	2.8	216
3	Opioid Peptide–expressing Leukocytes. Anesthesiology, 2001, 95, 500-508.	2.5	206
4	Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. Journal of Clinical Investigation, 1999, 103, 1007-1013.	8.2	187
5	Tissue-Destructive Macrophages in Giant Cell Arteritis. Circulation Research, 1999, 84, 1050-1058.	4.5	128
6	Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras Journal of Clinical Investigation, 1997, 99, 2842-2850.	8.2	117
7	Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain, 2017, 158, 2340-2353.	4.2	116
8	Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain, 2004, 112, 229-238.	4.2	115
9	Opioid Control of Inflammatory Pain Regulated by Intercellular Adhesion Molecule-1. Journal of Neuroscience, 2002, 22, 5588-5596.	3.6	111
10	Pain control by CXCR2 ligands through Ca 2+ â€regulated release of opioid peptides from polymorphonuclear cells. FASEB Journal, 2006, 20, 2627-2629.	0.5	110
11	Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. Journal of Clinical Investigation, 2008, 118, 1065-73.	8.2	105
12	Reduced dermal nerve fiber diameter in skin biopsies of patients with fibromyalgia. Pain, 2015, 156, 2319-2325.	4.2	105
13	Leukocytes in the regulation of pain and analgesia. Journal of Leukocyte Biology, 2005, 78, 1215-1222.	3.3	104
14	Pain and the immune system. British Journal of Anaesthesia, 2008, 101, 40-44.	3.4	91
15	Transient opening of the perineurial barrier for analgesic drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2018-27.	7.1	87
16	Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. Journal of Leukocyte Biology, 2006, 79, 1022-1032.	3.3	81
17	Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils. PLoS Pathogens, 2009, 5, e1000362.	4.7	79
18	Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biology, 2018, 14, 391-397.	9.0	74

#	Article	IF	CITATIONS
19	Immune cell–derived opioids protect against neuropathic pain in mice. Journal of Clinical Investigation, 2009, 119, 1051-1051.	8.2	74
20	Peripheral Antinociceptive Effects of Exogenous and Immune Cell-Derived Endomorphins in Prolonged Inflammatory Pain. Journal of Neuroscience, 2006, 26, 4350-4358.	3.6	73
21	Endogenous peripheral antinociception in early inflammation is not limited by the number of opioid-containing leukocytes but by opioid receptor expression. Pain, 2004, 108, 67-75.	4.2	72
22	microRNAs in nociceptive circuits as predictors of future clinical applications. Frontiers in Molecular Neuroscience, 2013, 6, 33.	2.9	70
23	Immune cell–derived opioids protect against neuropathic pain in mice. Journal of Clinical Investigation, 2009, 119, 278-86.	8.2	68
24	Tissue Monocytes/Macrophages in Inflammation. Anesthesiology, 2004, 101, 204-211.	2.5	66
25	Role of curcumin in the management of pathological pain. Phytomedicine, 2018, 48, 129-140.	5.3	66
26	lmmunosuppressive Effects of Opioids—Clinical Relevance. Journal of Neurolmmune Pharmacology, 2011, 6, 490-502.	4.1	64
27	The Connection of Monocytes and Reactive Oxygen Species in Pain. PLoS ONE, 2013, 8, e63564.	2.5	63
28	Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo. Journal of Neuroimmunology, 2007, 183, 133-145.	2.3	61
29	Interleukin-1 beta contributes to the upregulation of kappa opioid receptor mrna in dorsal root ganglia in response to peripheral inflammation. Neuroscience, 2006, 141, 989-998.	2.3	60
30	Increased cutaneous miR-let-7d expression correlates with small nerve fiber pathology in patients with fibromyalgia syndrome. Pain, 2016, 157, 2493-2503.	4.2	58
31	Mobilization of Opioid-containing Polymorphonuclear Cells by Hematopoietic Growth Factors and Influence on Inflammatory Pain. Anesthesiology, 2004, 100, 149-157.	2.5	57
32	CXCL10 Controls Inflammatory Pain via Opioid Peptide-Containing Macrophages in Electroacupuncture. PLoS ONE, 2014, 9, e94696.	2.5	56
33	Selectins and integrins but not platelet-endothelial cell adhesion molecule-1 regulate opioid inhibition of inflammatory pain. British Journal of Pharmacology, 2004, 142, 772-780.	5.4	53
34	CXCR1/2 ligands induce p38 MAPK-dependent translocation and release of opioid peptides from primary granules in vitro and in vivo. Brain, Behavior, and Immunity, 2007, 21, 1021-1032.	4.1	53
35	Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Scientific Reports, 2017, 7, 5447.	3.3	53
36	Toll like Receptor (TLR)-4 as a Regulator of Peripheral Endogenous Opioid-Mediated Analgesia in Inflammation. Molecular Pain, 2014, 10, 1744-8069-10-10.	2.1	51

#	Article	IF	CITATIONS
37	Modulation of Peripheral Endogenous Opioid Analgesia by Central Afferent Blockade. Anesthesiology, 2003, 98, 195-202.	2.5	46
38	Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Experimental Neurology, 2020, 327, 113244.	4.1	45
39	A Peptidomimetic Tight Junction Modulator To Improve Regional Analgesia. Molecular Pharmaceutics, 2012, 9, 1785-1794.	4.6	44
40	Blood–spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Annals of the New York Academy of Sciences, 2017, 1405, 71-88.	3.8	44
41	Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain. PLoS ONE, 2015, 10, e0123342.	2.5	41
42	Multiple Mechanisms Support Oligoclonal T Cell Expansion in Rheumatoid Synovitis. Molecular Medicine, 1997, 3, 452-465.	4.4	39
43	Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood–nerve–barrier permeability. Journal of Controlled Release, 2014, 185, 88-98.	9.9	37
44	The clinical (ir)relevance of opioid-induced immune suppression. Current Opinion in Anaesthesiology, 2010, 23, 588-592.	2.0	36
45	Involvement of cytokines, chemokines and adhesion molecules in opioid analgesia. European Journal of Pain, 2005, 9, 109-112.	2.8	35
46	What is normal trauma healing and what is complex regional pain syndrome I? An analysis of clinical and experimental biomarkers. Pain, 2019, 160, 2278-2289.	4.2	35
47	Clinical phenotypes and classification algorithm for complex regional pain syndrome. Neurology, 2020, 94, e357-e367.	1.1	35
48	Neurokinin-1 Receptor Antagonists Inhibit the Recruitment of Opioid-containing Leukocytes and Impair Peripheral Antinociception. Anesthesiology, 2007, 107, 1009-1017.	2.5	35
49	The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. Journal of Pain, 2017, 18, 933-946.	1.4	33
50	Leukocytes as mediators of pain and analgesia. Current Rheumatology Reports, 2007, 9, 503-510.	4.7	31
51	Antinociception by neutrophil-derived opioid peptides in noninflamed tissue—Role of hypertonicity and the perineurium. Brain, Behavior, and Immunity, 2009, 23, 548-557.	4.1	31
52	Peripheral Interaction of Resolvin D1 and E1 with Opioid Receptor Antagonists for Antinociception in Inflammatory Pain in Rats. Frontiers in Molecular Neuroscience, 2017, 10, 242.	2.9	30
53	Quantitative and Microstructural Changes of the Blood-Nerve Barrier in Peripheral Neuropathy. Frontiers in Neuroscience, 2018, 12, 936.	2.8	29
54	Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials, 2016, 82, 20-33.	11.4	28

#	Article	IF	CITATIONS
55	Redox-Sensitive Structure and Function of the First Extracellular Loop of the Cell–Cell Contact Protein Claudin-1: Lessons from Molecular Structure to Animals. Antioxidants and Redox Signaling, 2015, 22, 1-14.	5.4	27
56	Pro-algesic versus analgesic actions of immune cells. Current Opinion in Anaesthesiology, 2003, 16, 527-533.	2.0	26
57	Peripheral Non-Viral MIDGE Vector-Driven Delivery of Î ² -Endorphin in Inflammatory Pain. Molecular Pain, 2009, 5, 1744-8069-5-72.	2.1	25
58	Modulation of Tight Junction Proteins in the Perineurium to Facilitate Peripheral Opioid Analgesia. Anesthesiology, 2012, 116, 1323-1334.	2.5	25
59	Anti-Psoriatic Drug Anthralin Activates JNK via Lipid Peroxidation: Mononuclear Cells are More Sensitive than Keratinocytes. Journal of Investigative Dermatology, 2000, 114, 688-692.	0.7	24
60	The other side of the medal: How chemokines promote analgesia. Neuroscience Letters, 2008, 437, 203-208.	2.1	24
61	Longâ€ŧerm antinociception by electroacupuncture is mediated via peripheral opioid receptors in freeâ€moving rats with inflammatory hyperalgesia. European Journal of Pain, 2013, 17, 1447-1457.	2.8	23
62	Functional and structural characterization of axonal opioid receptors as targets for analgesia. Molecular Pain, 2016, 12, 174480691662873.	2.1	22
63	Modulation of tight junction proteins in the perineurium for regional pain control. Annals of the New York Academy of Sciences, 2012, 1257, 199-206.	3.8	21
64	The Molecular Link Between C-C-Chemokine Ligand 2-Induced Leukocyte Recruitment and Hyperalgesia. Journal of Pain, 2013, 14, 897-910.	1.4	20
65	Regional Differences in Tight Junction Protein Expression in the Blood–DRG Barrier and Their Alterations after Nerve Traumatic Injury in Rats. International Journal of Molecular Sciences, 2020, 21, 270.	4.1	18
66	A Novel Approach for the Control of Inflammatory Pain: Prostaglandin E2 Complexation by Randomly Methylated β-Cyclodextrins. Anesthesia and Analgesia, 2017, 124, 675-685.	2.2	17
67	Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1160-1169.	3.8	16
68	Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination. ELife, 2020, 9, .	6.0	15
69	The serum protease network—one key to understand complex regional pain syndrome pathophysiology. Pain, 2019, 160, 1402-1409.	4.2	14
70	Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy. Journal of Molecular Medicine, 2021, 99, 1237-1250.	3.9	14
71	Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury. BMC Anesthesiology, 2014, 14, 23.	1.8	12
72	Antinociception by the antiâ€oxidized phospholipid antibody <scp>E06</scp> . British Journal of Pharmacology, 2018, 175, 2940-2955.	5.4	12

#	Article	IF	CITATIONS
73	D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Molecular Pain, 2020, 16, 174480692090384.	2.1	11
74	Complex regional pain syndrome: role of contralateral sensitisation. British Journal of Anaesthesia, 2021, 127, e1-e3.	3.4	11
75	NaV1.9 Potentiates Oxidized Phospholipid-Induced TRP Responses Only under Inflammatory Conditions. Frontiers in Molecular Neuroscience, 2018, 11, 7.	2.9	9
76	Sensitivity and specificity of cerebrospinal fluid CXCL13 for diagnosing Lyme neuroborreliosis - a study on 1410 patients and review of the literature. Journal of the Neurological Sciences, 2020, 414, 116843.	0.6	9
77	Stabilization of Delphinidin in Complex with Sulfobutylether-β-Cyclodextrin Allows for Antinociception in Inflammatory Pain. Antioxidants and Redox Signaling, 2021, 34, 1260-1279.	5.4	9
78	Microvascular Barrier Protection by microRNA-183 via FoxO1 Repression: A Pathway Disturbed in Neuropathy and Complex Regional Pain Syndrome. Journal of Pain, 2022, 23, 967-980.	1.4	8
79	Neurogenic painful inflammation. Current Opinion in Anaesthesiology, 2004, 17, 461-464.	2.0	7
80	Homeostatic calcium fluxes, ER calcium release, SOCE, and calcium oscillations in cultured astrocytes are interlinked by a small calcium toolkit. Cell Calcium, 2022, 101, 102515.	2.4	7
81	MicroRNAâ€21â€5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Annals of the New York Academy of Sciences, 2022, 1515, 184-195.	3.8	6
82	Substance P Serum Degradation in Complex Regional Pain Syndrome – Another Piece of the Puzzle?. Journal of Pain, 2022, 23, 501-507.	1.4	5
83	Recruitment of opioid peptide-containing neutrophils is independent of formyl peptide receptors. Journal of Neuroimmunology, 2011, 230, 65-73.	2.3	4
84	Pain Control by Targeting Oxidized Phospholipids: Functions, Mechanisms, Perspectives. Frontiers in Endocrinology, 2020, 11, 613868.	3.5	4
85	Therapeutic Drug Monitoring of Antidepressants for the Treatment of Chronic Musculoskeletal Pain With and Without Depression. Therapeutic Drug Monitoring, 2020, 42, 893-901.	2.0	4
86	Pain, disability, and lifestyle: Patients with complex regional pain syndrome compared to chronic musculoskeletal pain—A retrospective analysis. European Journal of Pain, 2022, 26, 719-728.	2.8	4
87	Transient hypoalgesia after COVID-19 infection. Pain Reports, 2022, 7, e990.	2.7	4
88	Developmental patterns of serum 3α-androstanediol glucuronide. Journal of Endocrinological Investigation, 1997, 20, 138-143.	3.3	3
89	Netrin-1 as a Multitarget Barrier Stabilizer in the Peripheral Nerve after Injury. International Journal of Molecular Sciences, 2021, 22, 10090.	4.1	3
90	Comment on "Neutrophils: are they hyperalgesic or anti-hyperalgesic?― Journal of Leukocyte Biology, 2006, 80, 729-730.	3.3	2

#	Article	IF	CITATIONS
91	Leukocytes as Mediators of Pain and Analgesia. NeuroImmune Biology, 2010, , 237-250.	0.2	1
92	Immune System, Pain and Analgesia. , 2020, , 385-397.		1
93	Impaired psychological well-being of healthcare workers in a German department of anesthesiology is independent of immediate SARS-CoV-2 exposure - a longitudinal observational study. GMS German Medical Science, 2021, 19, Doc11.	2.7	0