List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/951058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modern Biophysics Redefines Our Understanding of Fungal Cell Wall Structure, Complexity, and Dynamics. MBio, 2022, 13, .	1.8	14
2	Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Computational and Structural Biotechnology Journal, 2021, 19, 647-663.	1.9	16
3	Macrophages: Checking Toxicity of Fungal Metabolites in the Colon. Trends in Endocrinology and Metabolism, 2021, 32, 63-65.	3.1	0
4	Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus. MBio, 2021, 12, .	1.8	24
5	Fungal spores are future-proofed. Nature Microbiology, 2021, 6, 979-980.	5.9	1
6	Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Frontiers in Molecular Biosciences, 2021, 8, 727053.	1.6	46
7	Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host and Microbe, 2021, 29, 1277-1293.e6.	5.1	26
8	Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring. Journal of Fungi (Basel,) Tj ETQq0 0 0 r	gBT /Over 1.5	ock 10 Tf 50
9	A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nature Communications, 2021, 12, 6346.	5.8	54
10	Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. Journal of Fungi (Basel, Switzerland), 2020, 6, 283.	1.5	28
11	Galactosaminogalactan activates the inflammasome to provide host protection. Nature, 2020, 588, 688-692.	13.7	78
12	Characterization of Extracellular Vesicles Produced by Aspergillus fumigatus Protoplasts. MSphere, 2020, 5, .	1.3	43
13	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	5.8	68

14	Cell Wall Composition Heterogeneity between Single Cells in Aspergillus fumigatus Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis. MBio, 2020, 11, .	1.8	25
15	Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca ²⁺ -ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. MBio, 2020, 11, .	1.8	17
16	What Are the Functions of Chitin Deacetylases in Aspergillus fumigatus?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 28.	1.8	23
17	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	5.8	100

18GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis. Current Topics in
Microbiology and Immunology, 2020, 425, 167-186.0.716

#	Article	IF	CITATIONS
19	Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction. Current Topics in Microbiology and Immunology, 2020, 425, 331-369.	0.7	2
20	<i>Aspergillus fumigatus</i> exoβ(1â€3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2019, 21, e13102.	1.1	12
21	Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Frontiers in Microbiology, 2019, 10, 2311.	1.5	39
22	Aspergillus fumigatus and Aspergillosis in 2019. Clinical Microbiology Reviews, 2019, 33, .	5.7	534
23	Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New Data, and Future Perspective. Journal of Fungi (Basel, Switzerland), 2019, 5, 48.	1.5	56
24	Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS ONE, 2019, 14, e0215535.	1.1	42
25	Assembly and disassembly of Aspergillus fumigatus conidial rodlets. Cell Surface, 2019, 5, 100023.	1.5	30
26	Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in <i>Aspergillus fumigatus</i> . MBio, 2019, 10, .	1.8	31
27	The Glycosylphosphatidylinositol-Anchored <i>DFG</i> Family Is Essential for the Insertion of Galactomannan into the β-(1,3)-Glucan–Chitin Core of the Cell Wall of Aspergillus fumigatus. MSphere, 2019, 4, .	1.3	28
28	Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.	1.8	18
29	The puzzling construction of the conidial outer layer of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2019, 21, e12994.	1.1	30
30	Calcineurin A Is Essential in the Regulation of Asexual Development, Stress Responses and Pathogenesis in Talaromyces marneffei. Frontiers in Microbiology, 2019, 10, 3094.	1.5	5
31	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157
32	A Novel Polyaminocarboxylate Compound To Treat Murine Pulmonary Aspergillosis by Interfering with Zinc Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	3
33	Fungal melanin stimulates surfactant protein D–mediated opsonization of and host immune response to Aspergillus fumigatus spores. Journal of Biological Chemistry, 2018, 293, 4901-4912.	1.6	36
34	MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Current Genetics, 2018, 64, 141-146.	0.8	11
35	Microbe Profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen. Microbiology (United Kingdom), 2018, 164, 1009-1011.	0.7	29
36	Chemical Synthesis and Application of Biotinylated Oligo-α-(1 → 3)- <scp>d</scp> -Glucosides To Study the Antibody and Cytokine Response against the Cell Wall I±-(1 → 3)- <scp>d</scp> -Glucan of <i>Aspergillus fumigatus</i> . Journal of Organic Chemistry, 2018, 83, 12965-12976.	1.7	32

#	Article	IF	CITATIONS
37	Penetration of the Human Pulmonary Epithelium by Aspergillus fumigatus Hyphae. Journal of Infectious Diseases, 2018, 218, 1306-1313.	1.9	36
38	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	5.9	66
39	Role of Hydrophobins in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2018, 4, 2.	1.5	93
40	Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis. Journal of Fungi (Basel, Switzerland), 2018, 4, 18.	1.5	30
41	Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. Journal of Biological Chemistry, 2018, 293, 15538-15555.	1.6	34
42	Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan. PLoS ONE, 2018, 13, e0193938.	1.1	34
43	Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates HUVEC proteins related to inflammatory and stress responses. Journal of Proteomics, 2017, 151, 83-96.	1.2	9
44	Immune evasion: Face changing in the fungal opera. Nature Microbiology, 2017, 2, 16266.	5.9	6
45	The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, .	1.2	736
46	The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall. MBio, 2017, 8, .	1.8	84
47	Dirhamnolipids secreted from <i>Pseudomonas aeruginosa</i> modify anjpegungal susceptibility of <i>Aspergillus fumigatus</i> by inhibiting β1,3 glucan synthase activity. ISME Journal, 2017, 11, 1578-1591.	4.4	54
48	When Aspergillus fumigatus Meets the Man. , 2017, , 119-137.		1
49	Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. Journal of Infectious Diseases, 2017, 216, 1281-1294.	1.9	81
50	Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 2017, 15, 661-674.	13.6	402
51	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	1.2	31
52	Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Current Opinion in Microbiology, 2017, 40, 152-159.	2.3	31
53	The Cell Wall of the Human Fungal Pathogen <i>Aspergillus fumigatus</i> : Biosynthesis, Organization, Immune Response, and Virulence. Annual Review of Microbiology, 2017, 71, 99-116.	2.9	157
54	GH16 and GH81 family β-(1,3)-glucanases in <i>Aspergillus fumigatus</i> are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2016, 18, 1285-1293.	1.1	47

#	Article	IF	CITATIONS
55	Galactosaminogalactan ofAspergillus fumigatus, a bioactive fungal polymer. Mycologia, 2016, 108, 572-580.	0.8	48
56	Biosynthesis of cell wall mannan in the conidium and the mycelium of <i>Aspergillusfumigatus</i> . Cellular Microbiology, 2016, 18, 1881-1891.	1.1	46
57	Administration of Zinc Chelators Improves Survival of Mice Infected with Aspergillus fumigatus both in Monotherapy and in Combination with Caspofungin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5631-5639.	1.4	35
58	Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus. MBio, 2016, 7, e00219.	1.8	118
59	Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host and Microbe, 2016, 19, 79-90.	5.1	183
60	Fungal immunology: from simple to very complex concepts. Seminars in Immunopathology, 2015, 37, 81-82.	2.8	5
61	Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Scientific Reports, 2015, 5, 8220.	1.6	123
62	<scp><i>A</i></scp> <i>spergillus fumigatus</i> devoid of cell wall βâ€1,3â€glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Molecular Microbiology, 2015, 95, 458-471.	1.2	90
63	Identification ofAspergillus fumigatusSurface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets. Journal of Infectious Diseases, 2015, 212, 1140-1149.	1.9	49
64	Fitness Studies of Azole-Resistant Strains of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7866-7869.	1.4	22
65	Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale, 2015, 7, 14996-15004.	2.8	33
66	Synthesis of a Pentasaccharide and Neoglycoconjugates Related to Fungal αâ€(1→3)â€Glucan and Their Use in the Generation of Antibodies to Trace <i>Aspergillus fumigatus</i> Cell Wall. Chemistry - A European Journal, 2015, 21, 1029-1035.	1.7	61
67	1H, 13C and 15N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. Biomolecular NMR Assignments, 2015, 9, 113-118.	0.4	16
68	The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.	2.1	167
69	A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.	2.1	117
70	Editorial overview: Host–microbe interactions: fungi. Current Opinion in Microbiology, 2014, 20, v-vi.	2.3	1
71	Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides. Journal of Biological Chemistry, 2014, 289, 1243-1256.	1.6	102
72	Deciphering the role of the chitin synthase families 1 and 2 in the <i>in vivo</i> and <i>in vitro</i> growth of <i>Aspergillus fumigatus</i> by multiple gene targeting deletion. Cellular Microbiology, 2014, 16, 1784-1805.	1.1	90

#	Article	IF	CITATIONS
73	A Polysaccharide Virulence Factor of a Human Fungal Pathogen Induces Neutrophil Apoptosis via NK Cells. Journal of Immunology, 2014, 192, 5332-5342.	0.4	68
74	Chemical Organization of the Cell Wall Polysaccharide Core of Malassezia restricta. Journal of Biological Chemistry, 2014, 289, 12647-12656.	1.6	62
75	Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82, 3141-3153.	1.0	113
76	Aspergillus Cell Wall and Biofilm. Mycopathologia, 2014, 178, 371-377.	1.3	108
77	Functional duality of the cell wall. Current Opinion in Microbiology, 2014, 20, 111-117.	2.3	121
78	Unraveling the Nanoscale Surface Properties of Chitin Synthase Mutants ofÂAspergillus fumigatus and Their Biological Implications. Biophysical Journal, 2013, 105, 320-327.	0.2	19
79	SUN Proteins Belong to a Novel Family of β-(1,3)-Glucan-modifying Enzymes Involved in Fungal Morphogenesis. Journal of Biological Chemistry, 2013, 288, 13387-13396.	1.6	34
80	Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes and Infection, 2013, 15, 259-269.	1.0	69
81	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	2.1	256
82	Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	2.1	110
83	The RodA Hydrophobin on <i>Aspergillus fumigatus</i> Spores Masks Dectin-1– and Dectin-2–Dependent Responses and Enhances Fungal Survival In Vivo. Journal of Immunology, 2013, 191, 2581-2588.	0.4	154
84	Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients. PLoS ONE, 2013, 8, e74326.	1.1	48
85	β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Frontiers in Microbiology, 2013, 4, 81.	1.5	111
86	α1,3 Glucans Are Dispensable in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 26-29.	3.4	80
87	The Composition of the Culture Medium Influences the β-1,3-Glucan Metabolism of Aspergillus fumigatus and the Antifungal Activity of Inhibitors of β-1,3-Glucan Synthesis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3428-3431.	1.4	43
88	Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 68-78.	3.4	107
89	Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins. Antimicrobial Agents and Chemotherapy, 2012, 56, 6121-6131.	1.4	53
90	Hydrophobins—Unique Fungal Proteins. PLoS Pathogens, 2012, 8, e1002700.	2.1	252

#	Article	IF	CITATIONS
91	TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	0.6	117
92	A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance. Fungal Genetics and Biology, 2012, 49, 210-216.	0.9	23
93	CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.	3.9	71
94	Fungal antioxidant pathways promote survival against neutrophils during infection. Journal of Clinical Investigation, 2012, 122, 2482-2498.	3.9	132
95	A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen <i>Aspergillus fumigatus</i> . Molecular Biology of the Cell, 2011, 22, 1896-1906.	0.9	48
96	The virulence of the opportunistic fungal pathogen <i>Aspergillus fumigatus</i> requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR). Virulence, 2011, 2, 12-21.	1.8	40
97	Phylogenetic and Functional Analysis of Aspergillus fumigatus MGTC, a Fungal Protein Homologous to a Bacterial Virulence Factor. Applied and Environmental Microbiology, 2011, 77, 4700-4703.	1.4	11
98	Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002372.	2.1	185
99	HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002330.	2.1	101
100	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	0.6	259
101	The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes and Infection, 2010, 12, 1035-1041.	1.0	55
102	Functional analysis of the superoxide dismutase family in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2010, 75, 910-923.	1.2	165
103	Members of protein Oâ€mannosyltransferase family in <i>Aspergillus fumigatus</i> differentially affect growth, morphogenesis and viability. Molecular Microbiology, 2010, 76, 1205-1221.	1.2	81
104	<i>In vivo</i> biofilm composition of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2010, 12, 405-410.	1.1	229
105	Tasting the fungal cell wall. Cellular Microbiology, 2010, 12, 863-872.	1.1	280
106	β(1-3)Glucanosyltransferase Gel4p Is Essential for Aspergillus fumigatus. Eukaryotic Cell, 2010, 9, 1294-1298.	3.4	84
107	Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathogens, 2010, 6, e1000873.	2.1	362
108	Cell wall α1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genetics and Biology, 2010, 47, 707-712.	0.9	108

#	Article	IF	CITATIONS
109	Problems and hopes in the development of drugs targeting the fungal cell wall. Expert Review of Anti-Infective Therapy, 2010, 8, 359-364.	2.0	20
110	Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 13401-13412.	1.6	116
111	The N-terminal Domain of Drosophila Gram-negative Binding Protein 3 (GNBP3) Defines a Novel Family of Fungal Pattern Recognition Receptors. Journal of Biological Chemistry, 2009, 284, 28687-28697.	1.6	51
112	Immune Sensing of <i>Aspergillus fumigatus</i> Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. Journal of Immunology, 2009, 183, 2407-2414.	0.4	159
113	A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus. PLoS Pathogens, 2009, 5, e1000258.	2.1	150
114	Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460, 1117-1121.	13.7	666
115	Characterization of a biofilm-like extracellular matrix inFLO1-expressingSaccharomyces cerevisiaecells. FEMS Yeast Research, 2009, 9, 411-419.	1.1	61
116	Galactofuranose attenuates cellular adhesion of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2009, 11, 1612-1623.	1.1	87
117	<i>Aspergillus fumigatus</i> : cell wall polysaccharides, their biosynthesis and organization. Future Microbiology, 2009, 4, 583-595.	1.0	156
118	Galactofuranose containing molecules in <i>Aspergillus fumigatus</i> . Medical Mycology, 2009, 47, S104-S109.	0.3	75
119	Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics, 2008, 9, 417.	1.2	118
120	High-Resolution Cell Surface Dynamics of Germinating Aspergillus fumigatus Conidia. Biophysical Journal, 2008, 94, 656-660.	0.2	163
121	FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast. Cell, 2008, 135, 726-737.	13.5	398
122	Aspergillus fumigatus-induced Interleukin-8 Synthesis by Respiratory Epithelial Cells Is Controlled by the Phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like Receptor-MyD88 Pathway. Journal of Biological Chemistry, 2008, 283, 30513-30521.	1.6	90
123	Glycosylinositolphosphoceramides in Aspergillus Fumigatus. Glycobiology, 2007, 18, 84-96.	1.3	47
124	Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genetics and Biology, 2007, 44, 682-690.	0.9	99
125	The Gas family of proteins ofSaccharomyces cerevisiae: characterization and evolutionary analysis. Yeast, 2007, 24, 297-308.	0.8	99
126	The GPI-anchored Gas and Crh families are fungal antigens. Yeast, 2007, 24, 289-296.	0.8	30

#	Article	IF	CITATIONS
127	An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cellular Microbiology, 2007, 9, 1588-1600.	1.1	231
128	The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Molecular Microbiology, 2007, 64, 1182-1197.	1.2	113
129	The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 2007, 66, 279-290.	1.2	779
130	Recombinant antigens as diagnostic markers for aspergillosis. Diagnostic Microbiology and Infectious Disease, 2006, 55, 279-291.	0.8	88
131	Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood, 2006, 107, 2562-2569.	0.6	115
132	<i>Aspergillus fumigatus</i> Induces Innate Immune Responses in Alveolar Macrophages through the MAPK Pathway Independently of TLR2 and TLR4. Journal of Immunology, 2006, 177, 3994-4001.	0.4	99
133	Glycosylphosphatidylinositol-Anchored Ecm33p Influences Conidial Cell Wall Biosynthesis in Aspergillus fumigatus. Applied and Environmental Microbiology, 2006, 72, 3259-3267.	1.4	58
134	Deletion of <i>GEL2</i> encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2005, 56, 1675-1688.	1.2	146
135	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272
136	Evidence for Sexuality in the Opportunistic Fungal Pathogen Aspergillus fumigatus. Current Biology, 2005, 15, 1242-1248.	1.8	283
137	Differences in Patterns of Infection and Inflammation for Corticosteroid Treatment and Chemotherapy in Experimental Invasive Pulmonary Aspergillosis. Infection and Immunity, 2005, 73, 494-503.	1.0	212
138	Glycosylphosphatidylinositol-anchored Fungal Polysaccharide in Aspergillus fumigatus. Journal of Biological Chemistry, 2005, 280, 39835-39842.	1.6	89
139	Aspergillus fumigatus: saprophyte or pathogen?. Current Opinion in Microbiology, 2005, 8, 385-392.	2.3	346
140	Catalases of Aspergillus fumigatus. Infection and Immunity, 2003, 71, 3551-3562.	1.0	215
141	Conidial Hydrophobins of Aspergillus fumigatus. Applied and Environmental Microbiology, 2003, 69, 1581-1588.	1.4	207
142	Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood, 2002, 100, 4521-4528.	0.6	223
143	Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus The GenBank accession number for the A. fumigatus PHOA sequence reported in this paper is AF462065 Microbiology (United Kingdom), 2002, 148, 2819-2829.	0.7	61
144	Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the Biosynthesis of the Fungal Cell Wall. Journal of Biological Chemistry, 2000, 275, 14882-14889.	1.6	308

#	Article	IF	CITATIONS
145	Molecular Organization of the Alkali-insoluble Fraction ofAspergillus fumigatus Cell Wall. Journal of Biological Chemistry, 2000, 275, 27594-27607.	1.6	342
146	Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall Journal of Biological Chemistry, 2000, 275, 41528-41530.	1.6	39
147	Histopathology of experimental invasive pulmonary aspergillosis in rats: Pathological comparison of pulmonary lesions induced by specific virulent factor deficient mutants. Microbial Pathogenesis, 1999, 27, 123-131.	1.3	41
148	Biochemical and Antigenic Characterization of a New Dipeptidyl-Peptidase Isolated from Aspergillus fumigatus. Journal of Biological Chemistry, 1997, 272, 6238-6244.	1.6	114
149	A Novel β-(, ,)-Glucanosyltransferase from the Cell Wall of Aspergillus fumigatus. Journal of Biological Chemistry, 1996, 271, 26843-26849.	1.6	114
150	Aspergillus fumigatus Secreted Proteases. , 0, , 87-106.		18