List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/951058/publications.pdf Version: 2024-02-01



3.9

12.8

1.1

23

16

| #  | Article                                                                                                                                                                                                                                | IF         | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 1  | Modern Biophysics Redefines Our Understanding of Fungal Cell Wall Structure, Complexity, and<br>Dynamics. MBio, 2022, 13, .                                                                                                            | 4.1        | 14            |
| 2  | Comparative host transcriptome in response to pathogenic fungi identifies common and<br>species-specific transcriptional antifungal host response pathways. Computational and Structural<br>Biotechnology Journal, 2021, 19, 647-663.  | 4.1        | 16            |
| 3  | Macrophages: Checking Toxicity of Fungal Metabolites in the Colon. Trends in Endocrinology and Metabolism, 2021, 32, 63-65.                                                                                                            | 7.1        | 0             |
| 4  | Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus<br>fumigatus. MBio, 2021, 12, .                                                                                                     | 4.1        | 24            |
| 5  | Fungal spores are future-proofed. Nature Microbiology, 2021, 6, 979-980.                                                                                                                                                               | 13.3       | 1             |
| 6  | Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and<br>Principal Component Analysis. Frontiers in Molecular Biosciences, 2021, 8, 727053.                                                     | 3.5        | 46            |
| 7  | Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis.<br>Cell Host and Microbe, 2021, 29, 1277-1293.e6.                                                                                   | 11.0       | 26            |
| 8  | Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring. Journal of Fungi (Basel,) Tj ETQq0 0 0                                                                                                                        | rgBT /Over | lock 10 Tf 50 |
| 9  | A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR.<br>Nature Communications, 2021, 12, 6346.                                                                                              | 12.8       | 54            |
| 10 | Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and<br>Biological Functions of an Emblematic Fungal Biomarker. Journal of Fungi (Basel, Switzerland), 2020,<br>6, 283.                       | 3.5        | 28            |
| 11 | Galactosaminogalactan activates the inflammasome to provide host protection. Nature, 2020, 588, 688-692.                                                                                                                               | 27.8       | 78            |
| 12 | Characterization of Extracellular Vesicles Produced by Aspergillus fumigatus Protoplasts. MSphere, 2020, 5, .                                                                                                                          | 2.9        | 43            |
| 13 | Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.                                                                                           | 12.8       | 68            |
| 14 | Cell Wall Composition Heterogeneity between Single Cells in Aspergillus fumigatus Leads to<br>Heterogeneous Behavior during Antifungal Treatment and Phagocytosis. MBio, 2020, 11, .                                                   | 4.1        | 25            |
| 15 | Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca<br><sup>2+</sup> -ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of<br>Aspergillus fumigatus. MBio, 2020, 11, . | 4.1        | 17            |

What Are the Functions of Chitin Deacetylases in Aspergillus fumigatus?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 28.

GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis. Current Topics in Microbiology and Immunology, 2020, 425, 167-186.

The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.

16

18

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction.<br>Current Topics in Microbiology and Immunology, 2020, 425, 331-369.                                                                                                                           | 1.1  | 2         |
| 20 | <i>Aspergillus fumigatus</i> exoβ(1â€3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2019, 21, e13102.                                                                                                                                    | 2.1  | 12        |
| 21 | Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus<br>Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection.<br>Frontiers in Microbiology, 2019, 10, 2311.                                           | 3.5  | 39        |
| 22 | Aspergillus fumigatus and Aspergillosis in 2019. Clinical Microbiology Reviews, 2019, 33, .                                                                                                                                                                                                   | 13.6 | 534       |
| 23 | Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New<br>Data, and Future Perspective. Journal of Fungi (Basel, Switzerland), 2019, 5, 48.                                                                                                       | 3.5  | 56        |
| 24 | Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS ONE, 2019, 14, e0215535.                                                                                                                                                                            | 2.5  | 42        |
| 25 | Assembly and disassembly of Aspergillus fumigatus conidial rodlets. Cell Surface, 2019, 5, 100023.                                                                                                                                                                                            | 3.0  | 30        |
| 26 | Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in <i>Aspergillus fumigatus</i> . MBio, 2019, 10, .                                                                                                                       | 4.1  | 31        |
| 27 | The Glycosylphosphatidylinositol-Anchored <i>DFG</i> Family Is Essential for the Insertion of<br>Galactomannan into the β-(1,3)-Glucan–Chitin Core of the Cell Wall of Aspergillus fumigatus. MSphere,<br>2019, 4, .                                                                          | 2.9  | 28        |
| 28 | Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG)<br>From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.                                                                                              | 3.9  | 18        |
| 29 | The puzzling construction of the conidial outer layer of <i>Aspergillus fumigatus</i> . Cellular<br>Microbiology, 2019, 21, e12994.                                                                                                                                                           | 2.1  | 30        |
| 30 | Calcineurin A Is Essential in the Regulation of Asexual Development, Stress Responses and<br>Pathogenesis in Talaromyces marneffei. Frontiers in Microbiology, 2019, 10, 3094.                                                                                                                | 3.5  | 5         |
| 31 | Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus.<br>Nature, 2018, 555, 382-386.                                                                                                                                                                | 27.8 | 157       |
| 32 | A Novel Polyaminocarboxylate Compound To Treat Murine Pulmonary Aspergillosis by Interfering with Zinc Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                                                                                                         | 3.2  | 3         |
| 33 | Fungal melanin stimulates surfactant protein D–mediated opsonization of and host immune response<br>to Aspergillus fumigatus spores. Journal of Biological Chemistry, 2018, 293, 4901-4912.                                                                                                   | 3.4  | 36        |
| 34 | MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus.<br>Current Genetics, 2018, 64, 141-146.                                                                                                                                                      | 1.7  | 11        |
| 35 | Microbe Profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen.<br>Microbiology (United Kingdom), 2018, 164, 1009-1011.                                                                                                                                             | 1.8  | 29        |
| 36 | Chemical Synthesis and Application of Biotinylated Oligo-α-(1 → 3)- <scp>d</scp> -Glucosides To Study the<br>Antibody and Cytokine Response against the Cell Wall I±-(1 → 3)- <scp>d</scp> -Glucan of <i>Aspergillus<br/>fumigatus</i> . Journal of Organic Chemistry, 2018, 83, 12965-12976. | 3.2  | 32        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Penetration of the Human Pulmonary Epithelium by Aspergillus fumigatus Hyphae. Journal of<br>Infectious Diseases, 2018, 218, 1306-1313.                                                                         | 4.0  | 36        |
| 38 | Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent<br>LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.                                                | 13.3 | 66        |
| 39 | Role of Hydrophobins in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2018, 4, 2.                                                                                                               | 3.5  | 93        |
| 40 | Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis. Journal of Fungi (Basel, Switzerland), 2018, 4, 18.                                                                | 3.5  | 30        |
| 41 | Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. Journal of<br>Biological Chemistry, 2018, 293, 15538-15555.                                                              | 3.4  | 34        |
| 42 | Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan.<br>PLoS ONE, 2018, 13, e0193938.                                                                                  | 2.5  | 34        |
| 43 | Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates<br>HUVEC proteins related to inflammatory and stress responses. Journal of Proteomics, 2017, 151, 83-96.          | 2.4  | 9         |
| 44 | Immune evasion: Face changing in the fungal opera. Nature Microbiology, 2017, 2, 16266.                                                                                                                         | 13.3 | 6         |
| 45 | The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, .                                                                                                                  | 3.0  | 736       |
| 46 | The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell<br>Wall. MBio, 2017, 8, .                                                                                   | 4.1  | 84        |
| 47 | Dirhamnolipids secreted from <i>Pseudomonas aeruginosa</i> modify anjpegungal susceptibility of<br><i>Aspergillus fumigatus</i> by inhibiting β1,3 glucan synthase activity. ISME Journal, 2017, 11, 1578-1591. | 9.8  | 54        |
| 48 | When Aspergillus fumigatus Meets the Man. , 2017, , 119-137.                                                                                                                                                    |      | 1         |
| 49 | Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. Journal of Infectious Diseases, 2017, 216, 1281-1294.           | 4.0  | 81        |
| 50 | Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 2017, 15, 661-674.                                                                                                 | 28.6 | 402       |
| 51 | MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen<br><i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.                                 | 2.5  | 31        |
| 52 | Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Current Opinion in Microbiology, 2017, 40, 152-159.                                                     | 5.1  | 31        |
| 53 | The Cell Wall of the Human Fungal Pathogen <i>Aspergillus fumigatus</i> : Biosynthesis,<br>Organization, Immune Response, and Virulence. Annual Review of Microbiology, 2017, 71, 99-116.                       | 7.3  | 157       |
| 54 | GH16 and GH81 family β-(1,3)-glucanases in <i>Aspergillus fumigatus</i> are essential for conidial cell<br>wall morphogenesis. Cellular Microbiology, 2016, 18, 1285-1293.                                      | 2.1  | 47        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Galactosaminogalactan ofAspergillus fumigatus, a bioactive fungal polymer. Mycologia, 2016, 108, 572-580.                                                                                                                                          | 1.9  | 48        |
| 56 | Biosynthesis of cell wall mannan in the conidium and the mycelium<br>of <i>Aspergillusfumigatus</i> . Cellular Microbiology, 2016, 18, 1881-1891.                                                                                                  | 2.1  | 46        |
| 57 | Administration of Zinc Chelators Improves Survival of Mice Infected with Aspergillus fumigatus both<br>in Monotherapy and in Combination with Caspofungin. Antimicrobial Agents and Chemotherapy, 2016,<br>60, 5631-5639.                          | 3.2  | 35        |
| 58 | Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen<br>Aspergillus fumigatus. MBio, 2016, 7, e00219.                                                                                                      | 4.1  | 118       |
| 59 | Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell<br>Host and Microbe, 2016, 19, 79-90.                                                                                                              | 11.0 | 183       |
| 60 | Fungal immunology: from simple to very complex concepts. Seminars in Immunopathology, 2015, 37, 81-82.                                                                                                                                             | 6.1  | 5         |
| 61 | Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner<br>Aspergillus fumigatus via phenazines. Scientific Reports, 2015, 5, 8220.                                                                                | 3.3  | 123       |
| 62 | <scp><i>A</i></scp> <i>spergillus fumigatus</i> devoid of cell wall βâ€1,3â€glucan is viable, massively sheds<br>galactomannan and is killed by septum formation inhibitors. Molecular Microbiology, 2015, 95, 458-471.                            | 2.5  | 90        |
| 63 | Identification ofAspergillus fumigatusSurface Components That Mediate Interaction of Conidia and<br>Hyphae With Human Platelets. Journal of Infectious Diseases, 2015, 212, 1140-1149.                                                             | 4.0  | 49        |
| 64 | Fitness Studies of Azole-Resistant Strains of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7866-7869.                                                                                                                   | 3.2  | 22        |
| 65 | Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale, 2015, 7, 14996-15004.                                                                                        | 5.6  | 33        |
| 66 | Synthesis of a Pentasaccharide and Neoglycoconjugates Related to Fungal αâ€(1→3)â€Glucan and Their Use in<br>the Generation of Antibodies to Trace <i>Aspergillus fumigatus</i> Cell Wall. Chemistry - A European<br>Journal, 2015, 21, 1029-1035. | 3.3  | 61        |
| 67 | 1H, 13C and 15N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. Biomolecular NMR Assignments, 2015, 9, 113-118.                                                                               | 0.8  | 16        |
| 68 | The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to<br>Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.                                                                            | 4.7  | 167       |
| 69 | A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.                                                         | 4.7  | 117       |
| 70 | Editorial overview: Host–microbe interactions: fungi. Current Opinion in Microbiology, 2014, 20, v-vi.                                                                                                                                             | 5.1  | 1         |
| 71 | Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose<br>Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides. Journal of<br>Biological Chemistry, 2014, 289, 1243-1256.         | 3.4  | 102       |
| 72 | Deciphering the role of the chitin synthase families 1 and 2 in the <i>in vivo</i> and <i>in<br/>vitro</i> growth of <i>Aspergillus fumigatus</i> by multiple gene targeting deletion. Cellular<br>Microbiology, 2014, 16, 1784-1805.              | 2.1  | 90        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Polysaccharide Virulence Factor of a Human Fungal Pathogen Induces Neutrophil Apoptosis via NK<br>Cells. Journal of Immunology, 2014, 192, 5332-5342.                                                                                      | 0.8 | 68        |
| 74 | Chemical Organization of the Cell Wall Polysaccharide Core of Malassezia restricta. Journal of<br>Biological Chemistry, 2014, 289, 12647-12656.                                                                                              | 3.4 | 62        |
| 75 | Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin<br>Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82,<br>3141-3153.                                    | 2.2 | 113       |
| 76 | Aspergillus Cell Wall and Biofilm. Mycopathologia, 2014, 178, 371-377.                                                                                                                                                                       | 3.1 | 108       |
| 77 | Functional duality of the cell wall. Current Opinion in Microbiology, 2014, 20, 111-117.                                                                                                                                                     | 5.1 | 121       |
| 78 | Unraveling the Nanoscale Surface Properties of Chitin Synthase Mutants ofÂAspergillus fumigatus and<br>Their Biological Implications. Biophysical Journal, 2013, 105, 320-327.                                                               | 0.5 | 19        |
| 79 | SUN Proteins Belong to a Novel Family of β-(1,3)-Clucan-modifying Enzymes Involved in Fungal<br>Morphogenesis. Journal of Biological Chemistry, 2013, 288, 13387-13396.                                                                      | 3.4 | 34        |
| 80 | Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation.<br>Microbes and Infection, 2013, 15, 259-269.                                                                                               | 1.9 | 69        |
| 81 | Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal<br>β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.                                                                         | 4.7 | 256       |
| 82 | Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall<br>Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.                                               | 4.7 | 110       |
| 83 | The RodA Hydrophobin on <i>Aspergillus fumigatus</i> Spores Masks Dectin-1– and<br>Dectin-2–Dependent Responses and Enhances Fungal Survival In Vivo. Journal of Immunology, 2013, 191,<br>2581-2588.                                        | 0.8 | 154       |
| 84 | Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients. PLoS ONE, 2013, 8, e74326.                                                              | 2.5 | 48        |
| 85 | β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Frontiers in Microbiology, 2013, 4, 81.                                                                                                                                             | 3.5 | 111       |
| 86 | α1,3 Glucans Are Dispensable in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 26-29.                                                                                                                                                     | 3.4 | 80        |
| 87 | The Composition of the Culture Medium Influences the β-1,3-Glucan Metabolism of Aspergillus<br>fumigatus and the Antifungal Activity of Inhibitors of β-1,3-Glucan Synthesis. Antimicrobial Agents and<br>Chemotherapy, 2012, 56, 3428-3431. | 3.2 | 43        |
| 88 | Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen<br>Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 68-78.                                                                                        | 3.4 | 107       |
| 89 | Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins. Antimicrobial Agents and Chemotherapy, 2012, 56, 6121-6131.                                                               | 3.2 | 53        |
| 90 | Hydrophobins—Unique Fungal Proteins. PLoS Pathogens, 2012, 8, e1002700.                                                                                                                                                                      | 4.7 | 252       |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.                                                                 | 1.4 | 117       |
| 92  | A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance. Fungal<br>Genetics and Biology, 2012, 49, 210-216.                                                                                                        | 2.1 | 23        |
| 93  | CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.                                                    | 8.2 | 71        |
| 94  | Fungal antioxidant pathways promote survival against neutrophils during infection. Journal of Clinical Investigation, 2012, 122, 2482-2498.                                                                                                      | 8.2 | 132       |
| 95  | A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen <i>Aspergillus fumigatus</i> . Molecular Biology of the Cell, 2011, 22, 1896-1906.                                                          | 2.1 | 48        |
| 96  | The virulence of the opportunistic fungal pathogen <i>Aspergillus fumigatus</i> requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR). Virulence, 2011, 2, 12-21. | 4.4 | 40        |
| 97  | Phylogenetic and Functional Analysis of Aspergillus fumigatus MGTC, a Fungal Protein Homologous<br>to a Bacterial Virulence Factor. Applied and Environmental Microbiology, 2011, 77, 4700-4703.                                                 | 3.1 | 11        |
| 98  | Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS<br>Pathogens, 2011, 7, e1002372.                                                                                                                    | 4.7 | 185       |
| 99  | HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002330.                                                              | 4.7 | 101       |
| 100 | Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.  | 1.4 | 259       |
| 101 | The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes and Infection, 2010, 12, 1035-1041.                                                                                          | 1.9 | 55        |
| 102 | Functional analysis of the superoxide dismutase family in <i>Aspergillus fumigatus</i> . Molecular<br>Microbiology, 2010, 75, 910-923.                                                                                                           | 2.5 | 165       |
| 103 | Members of protein Oâ€mannosyltransferase family in <i>Aspergillus fumigatus</i> differentially affect<br>growth, morphogenesis and viability. Molecular Microbiology, 2010, 76, 1205-1221.                                                      | 2.5 | 81        |
| 104 | <i>In vivo</i> biofilm composition of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2010, 12, 405-410.                                                                                                                                   | 2.1 | 229       |
| 105 | Tasting the fungal cell wall. Cellular Microbiology, 2010, 12, 863-872.                                                                                                                                                                          | 2.1 | 280       |
| 106 | β(1-3)Glucanosyltransferase Gel4p Is Essential for Aspergillus fumigatus. Eukaryotic Cell, 2010, 9,<br>1294-1298.                                                                                                                                | 3.4 | 84        |
| 107 | Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is<br>Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathogens, 2010, 6,<br>e1000873.                           | 4.7 | 362       |
| 108 | Cell wall α1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal<br>Genetics and Biology, 2010, 47, 707-712.                                                                                                 | 2.1 | 108       |

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Problems and hopes in the development of drugs targeting the fungal cell wall. Expert Review of<br>Anti-Infective Therapy, 2010, 8, 359-364.                                                                                                                                            | 4.4  | 20        |
| 110 | Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284,<br>13401-13412.                                                                                                                                                                       | 3.4  | 116       |
| 111 | The N-terminal Domain of Drosophila Gram-negative Binding Protein 3 (GNBP3) Defines a Novel Family of Fungal Pattern Recognition Receptors. Journal of Biological Chemistry, 2009, 284, 28687-28697.                                                                                    | 3.4  | 51        |
| 112 | Immune Sensing of <i>Aspergillus fumigatus</i> Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. Journal of Immunology, 2009, 183, 2407-2414.                                                                                                   | 0.8  | 159       |
| 113 | A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus. PLoS Pathogens, 2009, 5, e1000258.                                                                                                                                  | 4.7  | 150       |
| 114 | Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460, 1117-1121.                                                                                                                                                                                | 27.8 | 666       |
| 115 | Characterization of a biofilm-like extracellular matrix inFLO1-expressingSaccharomyces cerevisiaecells. FEMS Yeast Research, 2009, 9, 411-419.                                                                                                                                          | 2.3  | 61        |
| 116 | Galactofuranose attenuates cellular adhesion of <i>Aspergillus fumigatus</i> . Cellular<br>Microbiology, 2009, 11, 1612-1623.                                                                                                                                                           | 2.1  | 87        |
| 117 | <i>Aspergillus fumigatus</i> : cell wall polysaccharides, their biosynthesis and organization. Future<br>Microbiology, 2009, 4, 583-595.                                                                                                                                                | 2.0  | 156       |
| 118 | Galactofuranose containing molecules in <i>Aspergillus fumigatus</i> . Medical Mycology, 2009, 47, S104-S109.                                                                                                                                                                           | 0.7  | 75        |
| 119 | Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics, 2008, 9, 417.                                                                                                                                                                         | 2.8  | 118       |
| 120 | High-Resolution Cell Surface Dynamics of Germinating Aspergillus fumigatus Conidia. Biophysical<br>Journal, 2008, 94, 656-660.                                                                                                                                                          | 0.5  | 163       |
| 121 | FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast. Cell, 2008, 135, 726-737.                                                                                                                                                                    | 28.9 | 398       |
| 122 | Aspergillus fumigatus-induced Interleukin-8 Synthesis by Respiratory Epithelial Cells Is Controlled by<br>the Phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like<br>Receptor-MyD88 Pathway. Journal of Biological Chemistry, 2008, 283, 30513-30521. | 3.4  | 90        |
| 123 | Glycosylinositolphosphoceramides in Aspergillus Fumigatus. Glycobiology, 2007, 18, 84-96.                                                                                                                                                                                               | 2.5  | 47        |
| 124 | Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genetics and Biology, 2007, 44, 682-690.                                                                                                                                                                         | 2.1  | 99        |
| 125 | The Gas family of proteins ofSaccharomyces cerevisiae: characterization and evolutionary analysis.<br>Yeast, 2007, 24, 297-308.                                                                                                                                                         | 1.7  | 99        |
| 126 | The GPI-anchored Gas and Crh families are fungal antigens. Yeast, 2007, 24, 289-296.                                                                                                                                                                                                    | 1.7  | 30        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cellular<br>Microbiology, 2007, 9, 1588-1600.                                                                                                          | 2.1  | 231       |
| 128 | The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Molecular Microbiology, 2007, 64, 1182-1197.                                                                         | 2.5  | 113       |
| 129 | The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 2007, 66, 279-290.                                                                                                                                            | 2.5  | 779       |
| 130 | Recombinant antigens as diagnostic markers for aspergillosis. Diagnostic Microbiology and Infectious Disease, 2006, 55, 279-291.                                                                                                                | 1.8  | 88        |
| 131 | Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus.<br>Blood, 2006, 107, 2562-2569.                                                                                                            | 1.4  | 115       |
| 132 | <i>Aspergillus fumigatus</i> Induces Innate Immune Responses in Alveolar Macrophages through the MAPK Pathway Independently of TLR2 and TLR4. Journal of Immunology, 2006, 177, 3994-4001.                                                      | 0.8  | 99        |
| 133 | Glycosylphosphatidylinositol-Anchored Ecm33p Influences Conidial Cell Wall Biosynthesis in Aspergillus fumigatus. Applied and Environmental Microbiology, 2006, 72, 3259-3267.                                                                  | 3.1  | 58        |
| 134 | Deletion of <i>GEL2</i> encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2005, 56, 1675-1688.                                                           | 2.5  | 146       |
| 135 | Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.<br>Nature, 2005, 438, 1151-1156.                                                                                                                    | 27.8 | 1,272     |
| 136 | Evidence for Sexuality in the Opportunistic Fungal Pathogen Aspergillus fumigatus. Current Biology, 2005, 15, 1242-1248.                                                                                                                        | 3.9  | 283       |
| 137 | Differences in Patterns of Infection and Inflammation for Corticosteroid Treatment and<br>Chemotherapy in Experimental Invasive Pulmonary Aspergillosis. Infection and Immunity, 2005, 73,<br>494-503.                                          | 2.2  | 212       |
| 138 | Glycosylphosphatidylinositol-anchored Fungal Polysaccharide in Aspergillus fumigatus. Journal of<br>Biological Chemistry, 2005, 280, 39835-39842.                                                                                               | 3.4  | 89        |
| 139 | Aspergillus fumigatus: saprophyte or pathogen?. Current Opinion in Microbiology, 2005, 8, 385-392.                                                                                                                                              | 5.1  | 346       |
| 140 | Catalases of Aspergillus fumigatus. Infection and Immunity, 2003, 71, 3551-3562.                                                                                                                                                                | 2.2  | 215       |
| 141 | Conidial Hydrophobins of Aspergillus fumigatus. Applied and Environmental Microbiology, 2003, 69, 1581-1588.                                                                                                                                    | 3.1  | 207       |
| 142 | Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood, 2002, 100, 4521-4528.                                                                                  | 1.4  | 223       |
| 143 | Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus The GenBank<br>accession number for the A. fumigatus PHOA sequence reported in this paper is AF462065<br>Microbiology (United Kingdom), 2002, 148, 2819-2829. | 1.8  | 61        |
| 144 | Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the<br>Biosynthesis of the Fungal Cell Wall. Journal of Biological Chemistry, 2000, 275, 14882-14889.                                                       | 3.4  | 308       |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Molecular Organization of the Alkali-insoluble Fraction ofAspergillus fumigatus Cell Wall. Journal of Biological Chemistry, 2000, 275, 27594-27607.                                                                     | 3.4 | 342       |
| 146 | Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall Journal of Biological Chemistry, 2000, 275, 41528-41530.                                                                     | 3.4 | 39        |
| 147 | Histopathology of experimental invasive pulmonary aspergillosis in rats: Pathological comparison of pulmonary lesions induced by specific virulent factor deficient mutants. Microbial Pathogenesis, 1999, 27, 123-131. | 2.9 | 41        |
| 148 | Biochemical and Antigenic Characterization of a New Dipeptidyl-Peptidase Isolated from Aspergillus<br>fumigatus. Journal of Biological Chemistry, 1997, 272, 6238-6244.                                                 | 3.4 | 114       |
| 149 | A Novel $\hat{I}^2$ -( , , )-Glucanosyltransferase from the Cell Wall of Aspergillus fumigatus. Journal of Biological Chemistry, 1996, 271, 26843-26849.                                                                | 3.4 | 114       |
| 150 | Aspergillus fumigatus Secreted Proteases. , 0, , 87-106.                                                                                                                                                                |     | 18        |