David Andrew Phoenix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9510571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183806.	1.4	10
2	Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Molecular and Cellular Biochemistry, 2021, 476, 3729-3744.	1.4	3
3	Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183141.	1.4	4
4	Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities. Scientific Reports, 2019, 9, 10934.	1.6	22
5	Biophysical investigation into the antibacterial action of modelin-5-NH ₂ . Soft Matter, 2019, 15, 4215-4226.	1.2	4
6	Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific Reports, 2019, 9, 1385.	1.6	26
7	Investigations into the potential anticancer activity of Maximin H5. Biochimie, 2017, 137, 29-34.	1.3	13
8	pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals, 2016, 9, 67.	1.7	91
9	Bacterial Resistance to Host Defence Peptides. , 2016, , 161-204.		3
10	Low pH Enhances the Action of Maximin H5 against <i>Staphylococcus aureus</i> and Helps Mediate Lysylated Phosphatidylglycerol-Induced Resistance. Biochemistry, 2016, 55, 3735-3751.	1.2	14
11	The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal, 2016, 45, 195-207.	1.2	72
12	The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1111-1118.	1.4	49
13	The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides. Progress in Lipid Research, 2015, 59, 26-37.	5.3	45
14	Langmuir–Blodgett Approach to Investigate Antimicrobial Peptide–Membrane Interactions. Behavior Research Methods, 2014, 20, 83-110.	2.3	14
15	Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5. European Biophysics Journal, 2014, 43, 423-432.	1.2	13
16	The interaction of aurein 2.5 with fungal membranes. European Biophysics Journal, 2014, 43, 255-264.	1.2	6
17	On the selectivity and efficacy of defense peptides with respect to cancer cells. Medicinal Research Reviews, 2013, 33, 190-234.	5.0	139
18	Synthetic oligoureas of metaphenylenediamine mimic host defence peptides in their antimicrobial behaviour. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2518-2521.	1.0	9

DAVID ANDREW PHOENIX

#	Article	IF	CITATIONS
19	Aurein 2.3 functionality is supported by oblique orientated α-helical formation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 586-594.	1.4	21
20	A Novel Form of Bacterial Resistance to the Action of Eukaryotic Host Defense Peptides, the Use of a Lipid Receptor. Biochemistry, 2013, 52, 6021-6029.	1.2	19
21	Antimicrobial activity of aurein 2.5 against yeasts. FEMS Microbiology Letters, 2013, 346, 140-145.	0.7	6
22	Aberrant action of amyloidogenic host defense peptides: a new paradigm to investigate neurodegenerative disorders?. FASEB Journal, 2012, 26, 1776-1781.	0.2	34
23	Nebulization of ultradeformable liposomes: The influence of aerosolization mechanism and formulation excipients. International Journal of Pharmaceutics, 2012, 436, 519-526.	2.6	40
24	Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2094-2102.	1.4	16
25	Interactions between suitably functionalised conformationally distinct benzanilides and phospholipid monolayers. Soft Matter, 2012, 8, 3258.	1.2	11
26	Effect of salt on the interaction of Hal18 with lipid membranes. European Biophysics Journal, 2012, 41, 769-776.	1.2	8
27	Thermodynamic interactions of a cis and trans benzanilide with Escherichia coli bacterial membranes. European Biophysics Journal, 2012, 41, 687-693.	1.2	12
28	Effect of Amidation on the Antimicrobial Peptide Aurein 2.5 from Australian Southern Bell Frogs. Protein and Peptide Letters, 2012, 19, 586-591.	0.4	17
29	Effect of Cholesterol on the Membrane Interaction of Modelin-5 Isoforms. Biochemistry, 2011, 50, 10898-10909.	1.2	15
30	Influence of C-Terminal Amidation on the Efficacy of Modelin-5. Biochemistry, 2011, 50, 1514-1523.	1.2	57
31	A theoretical analysis of secondary structural characteristics of anticancer peptides. Molecular and Cellular Biochemistry, 2010, 333, 129-135.	1.4	28
32	Editorial:[Hot Topic: Amphiphilic Peptides Structures (Guest Editors: Sarah R. Dennison & David A.) Tj ETQq0 0 C	rgBT /Ove	≥rlock 10 Tf 50
33	A Langmuir Approach Using Monolayer Interactions to Investigate Surface Active Peptides. Protein and Peptide Letters, 2010, 17, 1363-1375.	0.4	21
34	Anionic Antimicrobial Peptides from Eukaryotic Organisms. Current Protein and Peptide Science, 2009, 10, 585-606.	0.7	245
35	The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Molecular and Cellular Biochemistry, 2009, 332, 43-50.	1.4	62
36	A study on the interactions of Aurein 2.5 with bacterial membranes. Colloids and Surfaces B: Biointerfaces, 2009, 68, 225-230.	2.5	21

DAVID ANDREW PHOENIX

#	Article	IF	CITATIONS
37	A Study on the Importance of Phenylalanine for Aurein Functionality. Protein and Peptide Letters, 2009, 16, 1455-1458.	0.4	19
38	Investigations into the ability of the peptide, HAL18, to interact with bacterial membranes. European Biophysics Journal, 2008, 38, 37-43.	1.2	18
39	The impact of membrane lipid composition on antimicrobial function of an α-helical peptide. Chemistry and Physics of Lipids, 2008, 151, 92-102.	1.5	28
40	Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells. Peptides, 2007, 28, 2091-2097.	1.2	5
41	Interactions of cell penetrating peptide Tat with model membranes: A biophysical study. Biochemical and Biophysical Research Communications, 2007, 363, 178-182.	1.0	25
42	The interactions of aurein 1.2 with cancer cell membranes. Biophysical Chemistry, 2007, 127, 78-83.	1.5	57
43	Antimicrobial properties of a lipid interactive α-helical peptide VP1 against Staphylococcus aureus bacteria. Biophysical Chemistry, 2007, 129, 279-283.	1.5	9
44	Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Biochemical and Biophysical Research Communications, 2006, 347, 1006-1010.	1.0	33
45	Investigations into the ability of an oblique α-helical template to provide the basis for design of an antimicrobial anionic amphiphilic peptide. FEBS Journal, 2006, 273, 3792-3803.	2.2	23
46	The phototoxicity of phenothiazinium-based photosensitizers to bacterial membranes. FEMS Immunology and Medical Microbiology, 2006, 46, 124-130.	2.7	16
47	Deuteration can affect the conformational behaviour of amphiphilic α-helical structures. Biophysical Chemistry, 2006, 119, 115-120.	1.5	4
48	Differences in Expression of Cardiovascular Risk Factors among Type 2 Diabetes Mellitus Patients of Different Age. Annals of the New York Academy of Sciences, 2006, 1084, 166-177.	1.8	16
49	Calpains and Their Multiple Roles in Diabetes Mellitus. Annals of the New York Academy of Sciences, 2006, 1084, 452-480.	1.8	39
50	Oblique Orientated α-Helices and Their Prediction. Current Protein and Peptide Science, 2006, 7, 529-537.	0.7	18
51	Anticancer α-Helical Peptides and Structure / Function Relationships Underpinning Their Interactions with Tumour Cell Membranes. Current Protein and Peptide Science, 2006, 7, 487-499.	0.7	142
52	Editorial [Hot Topic: The Multi-Purpose Amphiphilic α-Helix - A Historical Perspective (Guest) Tj ETQq0 0 C) rgBT /Ove	rlock 10 Tf 50
53	The Prediction of Hydrophobicity Gradients within Membrane Interactive Protein α-Helices Using a Novel Graphical Technique. Protein and Pentide Letters, 2006, 13, 595-600	0.4	11

A study on the bacterial photo-toxicity of phenothiazinium based photosensitisers. FEMS Immunology 2.7 10 and Medical Microbiology, 2005, 43, 367-372.

#	Article	IF	CITATIONS
55	Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: Role of a putative amphiphilic α-helix at the N-terminus of the movement protein. Biopolymers, 2005, 79, 86-96.	1.2	13
56	An investigation into the ability to define transmembrane protein spans using the biophysical properties of amino acid residues. Molecular and Cellular Biochemistry, 2005, 275, 189-197.	1.4	2
57	Amphiphilic α-Helical Antimicrobial Peptides and Their Structure / Function Relationships. Protein and Peptide Letters, 2005, 12, 31-39.	0.4	160
58	Phenothiazinium Based Photosensitisers - Photodynamic Agents with a Multiplicity of Cellular Targets and Clinical Applications. Current Drug Targets, 2005, 6, 615-627.	1.0	111
59	Are Oblique Orientated α-Helices Used by Antimicrobial Peptides for Membrane Invasion?. Protein and Peptide Letters, 2005, 12, 27-29.	0.4	40
60	Investigations into the Membrane Interactions of m-Calpain Domain V. Biophysical Journal, 2005, 88, 3008-3017.	0.2	30
61	Calpains: enzymes of vision?. Medical Science Monitor, 2005, 11, RA301-10.	0.5	16
62	Role of calpains in diabetes mellitus-induced cataractogenesis: A mini review. Molecular and Cellular Biochemistry, 2004, 261, 151-159.	1.4	33
63	The in vitro retardation of porcine cataractogenesis by the calpain inhibitor, SJA6017. Molecular and Cellular Biochemistry, 2004, 261, 169-173.	1.4	24
64	Investigation of hydrophobic moment and hydrophobicity properties for transmembrane alpha-helices. Theoretical Biology and Medical Modelling, 2004, 1, 5.	2.1	17
65	Calpains: targets of cataract prevention?. Trends in Molecular Medicine, 2004, 10, 78-84.	3.5	69
66	Role of calpains in diabetes mellitus: A mini review. Molecular and Cellular Biochemistry, 2004, 261, 161-167.	1.4	18
67	A statistical investigation of amphiphilic properties of C-terminally anchored peptidases. European Biophysics Journal, 2003, 32, 589-598.	1.2	7
68	Phenothiazinium-based photosensitizers: antibacterials of the future?. Trends in Molecular Medicine, 2003, 9, 283-285.	3.5	37
69	Is Use of the Hydrophobic Moment a Sound Basis for Predicting the Structure-Function Relationships of Membrane Interactive α-Helices?. Current Protein and Peptide Science, 2003, 4, 357-366.	0.7	6
70	Factors Determining The Efficacy Of Alphahelical Antimicrobial Peptides. Protein and Peptide Letters, 2003, 10, 497-502.	0.4	14
71	The Use of New Methylene Blue inPseudomonas aeruginosaBiofilm Destruction. Biofouling, 2002, 18, 247-249.	0.8	17
72	A Study on the C-Terminal Membrane Anchoring of Escherichia coli Penicillin-Binding Protein 5. Biochemical and Biophysical Research Communications, 2002, 290, 427-430.	1.0	1

5

#	Article	IF	CITATIONS
73	The hydrophobic moment and its use in the classification of amphiphilic structures (Review). Molecular Membrane Biology, 2002, 19, 1-10.	2.0	52
74	Domain V of m-calpain shows the potential to form an oblique-orientated α-helix, which may modulate the enzyme's activity via interactions with anionic lipid. FEBS Journal, 2002, 269, 5414-5422.	0.2	30
75	Investigations into the mechanisms used by the C-terminal anchors of Escherichia coli penicillin-binding proteins 4, 5, 6 and 6b for membrane interaction. FEBS Journal, 2002, 269, 5821-5829.	0.2	28
76	The Prediction of Amphiphilic α-Helices. Current Protein and Peptide Science, 2002, 3, 201-221.	0.7	41
77	An Investigation into the Membrane-Interactive Potential of the Escherichia coli KpsE C-Terminus. Biochemical and Biophysical Research Communications, 2001, 285, 976-980.	1.0	12
78	Phenothiaziniums as Putative Photobactericidal Agents for Red Blood Cell Concentrates. Journal of Chemotherapy, 2001, 13, 503-509.	0.7	19
79	A theoretical investigation into the lipid interactions of m-calpain. Molecular and Cellular Biochemistry, 2001, 223, 159-163.	1.4	8
80	Phenothiazine photosensitizers. III. Activity of methylene blue derivatives against pigmented melanoma cell lines. Journal of Chemotherapy, 2000, 12, 94-104.	0.7	32
81	Cytotoxicity and Adjuvant Activity of Cationic Photosensitizers in a Multidrug Resistant Cell Line. Journal of Chemotherapy, 1999, 11, 61-68.	0.7	26
82	Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp Journal of Antimicrobial Chemotherapy, 1999, 44, 823-825.	1.3	75
83	Protein targeting - how do you tell a protein where to go?. Journal of Biological Education, 1999, 33, 71-74.	0.8	0
84	Relationships Among Isoacceptor tRNAs Seems to Support the Coevolution Theory of the Origin of the Genetic Code. Journal of Molecular Evolution, 1999, 48, 168-177.	0.8	28
85	Uptake and cell-killing activities of a series of Victoria blue derivatives in a mouse mammary tumour cell line. Cytotechnology, 1999, 29, 35-43.	0.7	14
86	Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiology Letters, 1998, 160, 177-181.	0.7	208
87	A comparison of the bactericidal and photobactericidal activities of aminoacridines and bis(aminoacridines). Letters in Applied Microbiology, 1998, 26, 404-406.	1.0	8
88	An investigation into the lipid interactions of peptides corresponding to the C-terminal anchoring domains of Escherichia coli penicillin-binding proteins 4, 5 and 6. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 10-22.	1.4	17
89	Use of cross-linking to investigate protien interactions with <i>E. coli</i> penicillin binding protein 4. Biochemical Society Transactions, 1998, 26, S295-S295.	1.6	0
90	19 Effect of increasing methylation on the ability of methylene blue to cause diaphorase-catalysed oxidation of NADH. Biochemical Society Transactions, 1998, 26, S319-S319.	1.6	8

DAVID ANDREW PHOENIX

#	Article	IF	CITATIONS
91	An investigation into the lipid interactions of peptides corresponding to the C-terminal anchoring domains of <i>Escherichia coli</i> penicillin-binding proteins 4 and 5. Biochemical Society Transactions, 1998, 26, S296-S296.	1.6	1
92	In-vitro photobactericidal activity of aminoacridines. Journal of Antimicrobial Chemotherapy, 1997, 40, 587-589.	1.3	29
93	An algorithm for the detection of surface-active α helices with the potential to anchor proteins at the membrane interface. Bioinformatics, 1997, 13, 99-106.	1.8	8
94	MIRs are Present in Coding Regions of Human Genes. DNA Sequence, 1997, 8, 31-38.	0.7	14
95	α-Helical conformation in the C-terminal anchoring domains of E. coli penicillin-binding proteins 4, 5 and 6. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 278-284.	1.4	12
96	An investigation into the ability of C-terminal homologues of Escherichia coli low molecular mass penicillin-binding proteins 4, 5 and 6 to undergo membrane interaction. Biochimie, 1997, 79, 171-174.	1.3	15
97	Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. Journal of Photochemistry and Photobiology B: Biology, 1997, 40, 233-239.	1.7	157
98	Identification and Interpretation of Latent Periodicity within DNA sequences. Biochemical Society Transactions, 1996, 24, 422S-422S.	1.6	0
99	On the targeting and membrane assembly of theEscherichia coilouter membrane porin, PhoE. FEMS Immunology and Medical Microbiology, 1996, 16, 77-82.	2.7	3
100	Development of a bacterial model for studying anthracycline-membrane interactions. FEMS Microbiology Letters, 1996, 145, 281-286.	0.7	0
101	The membrane-interactive properties of the low-molecular-mass penicillin-binding proteins of <i>Escherichia coli</i> . Biochemical Society Transactions, 1995, 23, 976-980.	1.6	10
102	Investigation into the lipid requirement for the membrane anchoring of <i>Escherichia coli</i> penicillin binding protein 5. Biochemical Society Transactions, 1995, 23, 31S-31S.	1.6	2
103	The possible involvment of anionic phospholipids in the anchoring of penicillin binding protein 5 to the inner membrane of Escerichia coli. Biochemical Society Transactions, 1995, 23, 32S-32S.	1.6	2
104	Comparison of the potential membrane insertion geometry's of <i>Escherichia coli</i> low molecular weight penicillin binding protein anchors. Biochemical Society Transactions, 1995, 23, 33S-33S.	1.6	0
105	Codon bias in <i>Escherichia coli</i> may modulate translation initiation. Biochemical Society Transactions, 1995, 23, 76S-76S.	1.6	8
106	Investigations of a series of novel cationic photosensitisers and their potential use in photodynamic therapy. Biochemical Society Transactions, 1995, 23, 260S-260S.	1.6	0
107	Distribution and clustering of rare codons in Escherichia coli genes. Biochemical Society Transactions, 1995, 23, 503S-503S.	1.6	0
108	Using β-lactams to investigate the existence of a protein complex, involving the Escherichia coli penicillin-binding proteins 1a/1b, 3 and 5. Biochemical Society Transactions, 1995, 23, 562S-562S.	1.6	0

#	Article	IF	CITATIONS
109	The soluble form of Escherichia coli penicillin-binding protein 4 observed in over-expressing strains is an artefact of the system. Biochemical Society Transactions, 1995, 23, 563S-563S.	1.6	0
110	Depletion of anionic phospholipids has no observable effect on the anchoring of penicillin binding protein 5 to the inner membrane ofEscherichia coli. FEMS Microbiology Letters, 1995, 129, 215-220.	0.7	1
111	Multiple mechanisms of membrane anchoring ofEscherichia colipenicillin-binding proteins. FEMS Microbiology Reviews, 1994, 13, 1-12.	3.9	32
112	Development of a prokaryotic model for studying anthracycline-membrane interactions. Biochemical Society Transactions, 1994, 22, 397S-397S.	1.6	0
113	Phosphatidylglycerol dependent protein translocation across theEscherichia coliinner membrane is inhibited by the anti-cancer drug doxorubicin. FEBS Letters, 1993, 324, 113-116.	1.3	22
114	Membrane interaction ofEscherichia colipenicillin binding protein 5 is modulated by the ectomembranous domain. FEBS Letters, 1993, 322, 215-218.	1.3	15
115	Identification of a membrane interactive protein anchor. Biochemical Society Transactions, 1993, 21, 225S-225S.	1.6	5
116	The energetics of prePhoE translocation. Biochemical Society Transactions, 1993, 21, 341S-341S.	1.6	0
117	Investigation into structural features of the <i>Escherichia coli</i> penicillin-binding protein 5 <i>C</i> -terminal anchor. Biochemical Society Transactions, 1990, 18, 948-949.	1.6	12
118	pH-Induced insertion of the amphiphilic alpha-helical anchor of Escherichia coli penicillin-binding protein 5. FEBS Journal, 1990, 190, 365-369.	0.2	17