Jingli Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9510313/publications.pdf

Version: 2024-02-01

1162889 996849 24 273 8 15 citations h-index g-index papers 24 24 24 264 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	A novel convolutional neural network with interference suppression for the fault diagnosis of mechanical rotating components. Neural Computing and Applications, 2022, 34, 10971-10987.	3.2	6
2	A Novel Incipient Fault Diagnosis Method for Analog Circuits Based on GMKL-SVM and Wavelet Fusion Features. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-15.	2.4	33
3	A Novel Fault Diagnosis Method for Analog Circuits Based on Conditional Variational Neural Networks. Circuits, Systems, and Signal Processing, 2021, 40, 2609-2633.	1.2	10
4	An Efficient Method for Monitoring Degradation and Predicting the Remaining Useful Life of Mechanical Rotating Components. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-14.	2.4	7
5	A novel fault diagnosis method for analog circuits with noise immunity and generalization ability. Neural Computing and Applications, 2021, 33, 10537-10550.	3.2	6
6	An efficient method for imbalanced fault diagnosis of rotating machinery. Measurement Science and Technology, 2021, 32, 115025.	1.4	10
7	Fault Diagnosis Method of Analog Circuit Based on Enhanced Boundary Equilibrium Generative Adversarial Networks. , 2021, , .		2
8	A Novel Fault Detection Method Based on Multiple Features for Analog Circuits. , 2021, , .		O
9	A Fault Diagnosis Method for Mechanical Rotating Components Based on Automatic Learning of Pseudo Labels. , 2021, , .		3
10	A Fault Diagnosis Method of Rotating Machinery Based on One-Dimensional, Self-Normalizing Convolutional Neural Networks. Sensors, 2020, 20, 3837.	2.1	18
11	Fault Diagnosis of Rotating Machinery Based on One-Dimensional Deep Residual Shrinkage Network with a Wide Convolution Layer. Shock and Vibration, 2020, 2020, 1-12.	0.3	6
12	Failure Prediction of the Rotating Machinery Based on CEEMDAN-ApEn Feature and AR-UKF Model. Applied Sciences (Switzerland), 2020, 10, 2056.	1.3	18
13	A Novel Fault Detection Method for Semiconductor Manufacturing Processes. , 2019, , .		1
14	A Small Infrared Target Detection Method Using Adaptive Local Contrast Measurement. , 2019, , .		0
15	A Polarized Random Fourier Feature Kernel Least-Mean-Square Algorithm. IEEE Access, 2019, 7, 50833-50838.	2.6	8
16	An infrared-small-target detection method in compressed sensing domain based on local segment contrast measure. Infrared Physics and Technology, 2018, 93, 41-52.	1.3	6
17	An Efficient Approach for Fault Detection, Isolation, and Data Recovery of Self-Validating Multifunctional Sensors. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 543-558.	2.4	23
18	A novel fault diagnosis method for rolling bearing based on EEMD-PE and multiclass relevance vector machine. , 2017 , , .		7

#	Article	IF	CITATION
19	A gas concentration estimation method based on multivariate relevance vector machine using MOS gas sensor arrays. , 2017, , .		3
20	A real-time fault detection and isolation strategy for gas sensor arrays. , 2017, , .		11
21	Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays. Sensors, 2016, 16, 2069.	2.1	46
22	An infrared small target detection framework based on local contrast method. Measurement: Journal of the International Measurement Confederation, 2016, 91, 405-413.	2.5	9
23	Status Self-Validation of Sensor Arrays Using Gray Forecasting Model and Bootstrap Method. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1626-1640.	2.4	39
24	A Dual-input Fault Diagnosis Model Based on SE-MSCNN for Analog Circuits. Applied Intelligence, 0, , .	3.3	1