
## Anna–Lena Kjøniksen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9510014/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF                | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 1  | Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. , 2022, 1, 100055.                                                             |                   | 43            |
| 2  | Flame retardancy of rigid polyurethane foams containing thermoregulating microcapsules with phosphazene-based monomers. Journal of Materials Science, 2021, 56, 1172-1188.                         | 1.7               | 19            |
| 3  | Synthesis and antimicrobial activities of chitosan/polypropylene carbonate-based nanoparticles. RSC<br>Advances, 2021, 11, 10121-10129.                                                            | 1.7               | 8             |
| 4  | Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers. Journal of Materials Research and Technology, 2021, 11, 1506-1516. | 2.6               | 21            |
| 5  | Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.                                                                                | 7.8               | 38            |
| 6  | Energy Lost in a Hydrogel Osmotic Engine Due to a Pressure Drop. Industrial & Engineering<br>Chemistry Research, 2021, 60, 13348-13357.                                                            | 1.8               | 3             |
| 7  | Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels. Energy, 2021, 232, 121055.                                            | 4.5               | 5             |
| 8  | Recovered Energy from Salinity Gradients Utilizing Various Poly(Acrylic Acid)-Based Hydrogels.<br>Polymers, 2021, 13, 645.                                                                         | 2.0               | 12            |
| 9  | Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures.<br>Journal of Cleaner Production, 2020, 247, 119177.                                              | 4.6               | 56            |
| 10 | Effect of temperature on the rheological behavior of a new aqueous liquid crystal bio-lubricant.<br>Journal of Molecular Liquids, 2020, 301, 112406.                                               | 2.3               | 16            |
| 11 | Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block<br>Copolymers. Polymers, 2020, 12, 1495.                                                                  | 2.0               | 8             |
| 12 | Hydration development and thermal performance of calcium sulphoaluminate cements containing microencapsulated phase change materials. Cement and Concrete Research, 2020, 132, 106039.             | 4.6               | 34            |
| 13 | The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars. Journal of the American Ceramic Society, 2020, 103, 5852-5869.                   | 1.9               | 13            |
| 14 | The Effect of Number of Arms on the Aggregation Behavior of Thermoresponsive Poly( N) Tj ETQq0 0 0 rgBT /Ove                                                                                       | rlock 10 T<br>1.0 | f 50 222 Td ( |
| 15 | Effect of temperature on geopolymer and Portland cement composites modified with<br>Micro-encapsulated Phase Change materials. Construction and Building Materials, 2020, 252, 119055.             | 3.2               | 37            |
| 16 | Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications. Energy, 2019, 186, 115792.                                              | 4.5               | 71            |

| 17 | Effect of microencapsulated phase change materials on the flow behavior of cement composites.<br>Construction and Building Materials, 2019, 202, 353-362. | 3 | 3.2 | 33 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|
|    |                                                                                                                                                           |   |     |    |

18 Metallogels: Availability, Applicability, and Advanceability. Advanced Materials, 2019, 31, e1806204. 11.1 112

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Real time rheological study of first network effects on the in situ polymerized semi-interpenetrating hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 111-117.                                 | 2.3 | 2         |
| 20 | The accurate diffusive model for predicting the vapor pressure of phase change materials by thermogravimetric analysis. Thermochimica Acta, 2019, 676, 64-70.                                                                          | 1.2 | 8         |
| 21 | Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Construction and Building Materials, 2019, 200, 94-103.              | 3.2 | 117       |
| 22 | Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications. Solar Energy, 2019, 178, 295-307.                                                                         | 2.9 | 44        |
| 23 | Time-dependent structural breakdown of microencapsulated phase change materials suspensions.<br>Journal of Dispersion Science and Technology, 2019, 40, 179-185.                                                                       | 1.3 | 7         |
| 24 | Physical and mechanical properties of fly ash and slag geopolymer concrete containing different<br>types of micro-encapsulated phase change materials. Construction and Building Materials, 2018, 173,<br>28-39.                       | 3.2 | 77        |
| 25 | Influence of microcapsule size and shell polarity on thermal and mechanical properties of<br>thermoregulating geopolymer concrete for passive building applications. Energy Conversion and<br>Management, 2018, 164, 198-209.          | 4.4 | 65        |
| 26 | Rheological and thermal properties of suspensions of microcapsules containing phase change materials. Colloid and Polymer Science, 2018, 296, 981-988.                                                                                 | 1.0 | 15        |
| 27 | Polymer coated liposomes for use in the oral cavity – a study of the <i>in vitro</i> toxicity, effect on cell permeability and interaction with mucin. Journal of Liposome Research, 2018, 28, 62-73.                                  | 1.5 | 36        |
| 28 | The role of radical polymerization in the production of thermoregulating microcapsules or polymers from saturated and unsaturated fatty acids. Journal of Applied Polymer Science, 2018, 135, 45970.                                   | 1.3 | 9         |
| 29 | Influence of Microcapsule Size and Shell Polarity on the Time-Dependent Viscosity of Geopolymer<br>Paste. Industrial & Engineering Chemistry Research, 2018, 57, 9457-9464.                                                            | 1.8 | 34        |
| 30 | Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energy and Buildings, 2018, 173, 678-688.                              | 3.1 | 41        |
| 31 | Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride)<br>Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 22218-22225.                                                                     | 4.0 | 24        |
| 32 | Predicting microcapsules morphology and encapsulation efficiency by combining the spreading coefficient theory and polar surface energy component. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 49-59. | 2.3 | 11        |
| 33 | Influence of polymer coating on release of I-dopa from core-shell Fe@Au nanoparticle systems.<br>Colloid and Polymer Science, 2017, 295, 391-402.                                                                                      | 1.0 | 3         |
| 34 | Equilibrium adsorption of polyvinylpyrrolidone and its role on thermoregulating microcapsules synthesis process. Colloid and Polymer Science, 2017, 295, 783-792.                                                                      | 1.0 | 15        |
| 35 | Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Conversion and Management, 2017, 133, 56-66.              | 4.4 | 222       |
| 36 | Mechanical properties and microscale changes of geopolymer concrete and Portland cement<br>concrete containing micro-encapsulated phase change materials. Cement and Concrete Research, 2017,<br>100, 341-349.                         | 4.6 | 132       |

| #  | Article                                                                                                                                                                                         | IF       | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 37 | Development of thermoregulating microcapsules with cyclotriphosphazene as a flame retardant agent. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012120.                 | 0.3      | 5            |
| 38 | Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer. Journal of Nanoparticle Research, 2016, 18, 1.                             | 0.8      | 6            |
| 39 | Stabilization of Pluronic Gels by Hydrophobically Modified Hydroxyethylcellulose. International<br>Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 76-83.                  | 1.8      | 6            |
| 40 | Small-Angle X-ray Scattering Studies of Thermoresponsive Poly( <i>N</i> -isopropylacrylamide) Star<br>Polymers in Water. Macromolecules, 2015, 48, 2235-2243.                                   | 2.2      | 19           |
| 41 | Characterization of temperature induced changes in liposomes coated with poly( N) Tj ETQq1 1 0.784314 rgBT /                                                                                    | Overlock | 10 Tf 50 582 |
| 42 | Stabilization of pluronic gels in the presence of different polysaccharides. Journal of Applied Polymer<br>Science, 2014, 131, .                                                                | 1.3      | 22           |
| 43 | The effect of cationic and anionic blocks on temperature-induced micelle formation. Journal of Applied Crystallography, 2014, 47, 22-28.                                                        | 1.9      | 5            |
| 44 | Microparticles based on hydrophobically modified chitosan as drug carriers. Journal of Applied<br>Polymer Science, 2014, 131, .                                                                 | 1.3      | 7            |
| 45 | Sustained Release of Naltrexone from Poly(Nâ€Isopropylacrylamide) Microgels. Journal of<br>Pharmaceutical Sciences, 2014, 103, 227-234.                                                         | 1.6      | 13           |
| 46 | Influence of poly(ethylene glycol) block length on the adsorption of thermoresponsive copolymers onto gold surfaces. Journal of Materials Science, 2013, 48, 7055-7062.                         | 1.7      | 4            |
| 47 | Preparation of Ionically Cross-Linked Pectin Nanoparticles in the Presence of Chlorides of Divalent and Monovalent Cations. Biomacromolecules, 2013, 14, 3523-3531.                             | 2.6      | 64           |
| 48 | Studies on pectin-coated liposomes and their interaction with mucin. Colloids and Surfaces B:<br>Biointerfaces, 2013, 103, 158-165.                                                             | 2.5      | 77           |
| 49 | Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. International<br>Journal of Pharmaceutics, 2013, 448, 105-114.                                              | 2.6      | 35           |
| 50 | In vitro cytotoxicity of a thermoresponsive gel system combining ethyl(hydroxyethyl) cellulose and lysine-based surfactants. Colloids and Surfaces B: Biointerfaces, 2013, 102, 682-686.        | 2.5      | 24           |
| 51 | Small-Angle X-ray Scattering Study of Charged Triblock Copolymers as a Function of Polymer Concentration, Temperature, and Charge Screening. Macromolecules, 2012, 45, 246-255.                 | 2.2      | 14           |
| 52 | Interactions between ethyl(hydroxyethyl) cellulose and lysine-based surfactants in aqueous media.<br>European Polymer Journal, 2012, 48, 1622-1631.                                             | 2.6      | 12           |
| 53 | Thermoresponsive hydrogels with low toxicity from mixtures of ethyl(hydroxyethyl) cellulose and arginine-based surfactants. International Journal of Pharmaceutics, 2012, 436, 454-462.         | 2.6      | 26           |
| 54 | Effects of Temperature and Salt Addition on the Association Behavior of Charged Amphiphilic Diblock<br>Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 2012, 116, 11386-11395. | 1.2      | 34           |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cationic Poly( <i>N</i> -isopropylacrylamide) Block Copolymer Adsorption Investigated by Dual<br>Polarization Interferometry and Lattice Mean–Field Theory. Langmuir, 2012, 28, 14028-14038.                          | 1.6 | 11        |
| 56 | Thermoresponsive Poly(2-oxazoline) Block Copolymers Exhibiting Two Cloud Points: Complex<br>Multistep Assembly Behavior. Macromolecules, 2012, 45, 4337-4345.                                                         | 2.2 | 95        |
| 57 | Structure and Interactions of Charged Triblock Copolymers Studied by Small-Angle X-ray Scattering:<br>Dependence on Temperature and Charge Screening. Langmuir, 2012, 28, 1105-1114.                                  | 1.6 | 19        |
| 58 | Complex coacervate micelles formed by a C18-capped cationic triblock thermoresponsive copolymer interacting with SDS. Soft Matter, 2012, 8, 11514.                                                                    | 1.2 | 10        |
| 59 | Stability of Chitosan Nanoparticles Cross-Linked with Tripolyphosphate. Biomacromolecules, 2012, 13, 3747-3756.                                                                                                       | 2.6 | 187       |
| 60 | Effects of Hofmeister anions on the flocculation behavior of temperature-responsive poly(N-isopropylacrylamide) microgels. Colloid and Polymer Science, 2012, 290, 1609-1616.                                         | 1.0 | 22        |
| 61 | Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid and Polymer Science, 2012, 290, 919-929.                                                                                     | 1.0 | 109       |
| 62 | Effects of addition of anionic and cationic surfactants to poly(N-isopropylacrylamide) microgels with and without acrylic acid groups. Colloid and Polymer Science, 2012, 290, 931-940.                               | 1.0 | 3         |
| 63 | Characterization of low molecular mass thermosensitive diblock copolymers and their self-assembly by means of analytical ultracentrifugation. Colloid and Polymer Science, 2012, 290, 297-306.                        | 1.0 | 4         |
| 64 | Gold Nanoparticles Affect Thermoresponse and Aggregation Properties of Mesoscopic<br>Immunoglobulin G Clusters. Journal of Physical Chemistry C, 2011, 115, 11390-11399.                                              | 1.5 | 6         |
| 65 | Optical-scattering method for the determination of the local polymer concentration inside nanoparticles. Physical Review E, 2011, 84, 022401.                                                                         | 0.8 | 24        |
| 66 | Effects of Temperature and Salt Concentration on the Structural and Dynamical Features in Aqueous Solutions of Charged Triblock Copolymers. Journal of Physical Chemistry B, 2011, 115, 2125-2139.                    | 1.2 | 27        |
| 67 | Temperature-Induced Aggregation Kinetics in Aqueous Solutions of a Temperature-Sensitive<br>Amphiphilic Block Copolymer. Journal of Physical Chemistry B, 2011, 115, 8975-8980.                                       | 1.2 | 13        |
| 68 | Effect of polyethylene glycol (PEG) length on the association properties of temperature-sensitive<br>amphiphilic triblock copolymers (PNIPAAMm-b-PEGn-b-PNIPAAMm) in aqueous solution. Soft Matter,<br>2011, 7, 8111. | 1.2 | 21        |
| 69 | Characterization of temperature-induced association in aqueous solutions of charged ABCBA-type pentablock tercopolymers. Soft Matter, 2011, 7, 1168-1175.                                                             | 1.2 | 26        |
| 70 | Studies on pectin coating of liposomes for drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 88, 664-673.                                                                                                  | 2.5 | 83        |
| 71 | Temperature-responsive self-assembly of charged and uncharged<br>hydroxyethylcellulose-graft-poly(N-isopropylacrylamide) copolymer in aqueous solution. Colloid and<br>Polymer Science, 2011, 289, 993-1003.          | 1.0 | 13        |
| 72 | Characterization of complexation and phase behavior of mixed systems of unmodified and hydrophobically modified oppositely charged polyelectrolytes. Colloid and Polymer Science, 2010, 288, 1121-1130.               | 1.0 | 11        |

## Anna–Lena KjÃ,niksen

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Temperature-induced adsorption and optical properties of an amphiphilic diblock copolymer adsorbed onto flat and curved silver surfaces. Journal of Colloid and Interface Science, 2010, 342, 142-146.                                                             | 5.0 | 5         |
| 74 | Characterization of polyelectrolyte features in polysaccharide systems and mucin. Advances in Colloid and Interface Science, 2010, 158, 108-118.                                                                                                                   | 7.0 | 30        |
| 75 | Adsorption of Cationic Hydroxyethylcellulose Derivatives onto Planar and Curved Gold Surfaces.<br>Langmuir, 2010, 26, 15925-15932.                                                                                                                                 | 1.6 | 6         |
| 76 | Temperature-Dependent Optical Properties of Gold Nanoparticles Coated with a Charged Diblock<br>Copolymer and an Uncharged Triblock Copolymer. ACS Nano, 2010, 4, 1187-1201.                                                                                       | 7.3 | 43        |
| 77 | Single-Molecule Behavior of Asymmetric Thermoresponsive Amphiphilic Copolymers in Dilute Solution. Journal of Physical Chemistry B, 2010, 114, 8887-8893.                                                                                                          | 1.2 | 15        |
| 78 | Viscosification in Polymerâ^'Surfactant Mixtures at Low Temperatures. Journal of Physical Chemistry B, 2010, 114, 6273-6280.                                                                                                                                       | 1.2 | 20        |
| 79 | Temperature-Induced Flocculation of Gold Particles with an Adsorbed Thermoresponsive Cationic Copolymer. Journal of Physical Chemistry C, 2010, 114, 21960-21968.                                                                                                  | 1.5 | 18        |
| 80 | Friction in aqueous media tuned by temperature-responsive polymer layers. Soft Matter, 2010, 6, 2489.                                                                                                                                                              | 1.2 | 70        |
| 81 | Preparation and characterization of cross-linked polymeric nanoparticles for enhanced oil recovery applications. Journal of Applied Polymer Science, 2009, 113, 1916-1924.                                                                                         | 1.3 | 20        |
| 82 | Slow salt-induced aggregation of citrate-covered silver particles in aqueous solutions of cellulose derivatives. Colloid and Polymer Science, 2009, 287, 1391-1404.                                                                                                | 1.0 | 24        |
| 83 | Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polymer Bulletin, 2009, 62, 487-502.                                                                                                                           | 1.7 | 109       |
| 84 | Novel transition behavior in aqueous solutions of a charged thermoresponsive triblock copolymer.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333, 32-45.                                                                            | 2.3 | 24        |
| 85 | Effects of Temperature and pH on the Contraction and Aggregation of Microgels in Aqueous<br>Suspensions. Journal of Physical Chemistry B, 2009, 113, 11115-11123.                                                                                                  | 1.2 | 63        |
| 86 | Rheological and structural aspects on association of hydrophobically modified polysaccharides. Soft<br>Matter, 2009, 5, 1328.                                                                                                                                      | 1.2 | 37        |
| 87 | Effect of Surfactant Addition, Temperature, and Solvent conditions on Functional Microgels for Enhanced Oil recovery Applications. , 2009, , .                                                                                                                     |     | 1         |
| 88 | Structural and dynamical characterization of poly-gamma-glutamic acid-based cross-linked nanoparticles. Colloid and Polymer Science, 2008, 286, 365-376.                                                                                                           | 1.0 | 32        |
| 89 | Temperature-induced intermicellization and contraction in aqueous mixtures of sodium dodecyl<br>sulfate and an amphiphilic diblock copolymer. Journal of Colloid and Interface Science, 2008, 326,<br>76-88.                                                       | 5.0 | 15        |
| 90 | Interaction behaviors in aqueous solutions of negatively and positively charged hydrophobically<br>modified hydroxyethylcellulose in the presence of an anionic surfactant. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2008, 328, 79-89. | 2.3 | 25        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of pH on the association behavior in aqueous solutions of pig gastric mucin. Carbohydrate<br>Research, 2008, 343, 328-340.                                                                                                                      | 1.1 | 55        |
| 92  | Modified polysaccharides for use in enhanced oil recovery applications. European Polymer Journal, 2008, 44, 959-967.                                                                                                                                   | 2.6 | 60        |
| 93  | Anomalous turbidity, dynamical, and rheological properties in aqueous mixtures of a<br>thermoresponsive PVCL-g-C11EO42 copolymer and an anionic surfactant. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2008, 316, 159-170.   | 2.3 | 4         |
| 94  | Effect of pH on the Behavior of Hyaluronic Acid in Dilute and Semidilute Aqueous Solutions.<br>Macromolecular Symposia, 2008, 274, 131-140.                                                                                                            | 0.4 | 78        |
| 95  | Temperature-Induced Formation and Contraction of Micelle-Like Aggregates in Aqueous Solutions of Thermoresponsive Short-Chain Copolymers. Journal of Physical Chemistry B, 2008, 112, 3294-3299.                                                       | 1.2 | 56        |
| 96  | Temperature-Induced Intermicellization of "Hairy―and "Crew-Cut―Micelles in an Aqueous Solution of<br>a Thermoresponsive Copolymer. Langmuir, 2008, 24, 14227-14233.                                                                                    | 1.6 | 35        |
| 97  | Intramolecular and Intermolecular Association during Chemical Cross-Linking of Dilute Solutions of<br>Different Polysaccharides under the Influence of Shear Flow. Journal of Physical Chemistry B, 2008,<br>112, 1082-1089.                           | 1.2 | 12        |
| 98  | Effects of β-cyclodextrin and β-cyclodextrin polymer addition and temperature on the modulation of hydrophobic interactions in aqueous solutions of two hydrophobically modified biopolymers. Journal of Non-Crystalline Solids, 2007, 353, 3906-3914. | 1.5 | 18        |
| 99  | Effect of Hydrophobic Modification on Rheological and Swelling Features during Chemical Gelation of Aqueous Polysaccharides. Biomacromolecules, 2007, 8, 719-728.                                                                                      | 2.6 | 22        |
| 100 | Anomalous Transition in Aqueous Solutions of a Thermoresponsive Amphiphilic Diblock Copolymer.<br>Journal of Physical Chemistry B, 2007, 111, 10862-10870.                                                                                             | 1.2 | 48        |
| 101 | Characterization of interactions in aqueous mixtures of hydrophobically modified alginate and different types of surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 105-113.                                     | 2.3 | 21        |
| 102 | Brownian dynamics simulation of reversible polymer networks using a non-interacting<br>bead-and-spring chain model. Journal of Non-Newtonian Fluid Mechanics, 2007, 146, 3-10.                                                                         | 1.0 | 11        |
| 103 | Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions. Journal of<br>Hazardous Materials, 2007, 153, 1185-92.                                                                                                                | 6.5 | 22        |
| 104 | Shrinking of Chemically Cross-Linked Polymer Networks in the Postgel Region. Polymer Bulletin, 2007, 58, 435-445.                                                                                                                                      | 1.7 | 6         |
| 105 | Anomalous Viscosity Behavior in Aqueous Solutions of Hyaluronic Acid. Polymer Bulletin, 2007, 59, 217-226.                                                                                                                                             | 1.7 | 30        |
| 106 | Characterization of the chemical degradation of hyaluronic acid during chemical gelation in the presence of different cross-linker agents. Carbohydrate Research, 2007, 342, 2776-2792.                                                                | 1.1 | 46        |
| 107 | Rheological and Structural Characterization of the Interactions between Cyclodextrin Compounds and Hydrophobically Modified Alginate. Biomacromolecules, 2006, 7, 1871-1878.                                                                           | 2.6 | 47        |
| 108 | Altering Associations in Aqueous Solutions of a Hydrophobically Modified Alginate in the Presence of<br>β-Cyclodextrin Monomers. Journal of Physical Chemistry B, 2006, 110, 190-195.                                                                  | 1.2 | 66        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Characterization of Interactions in Aqueous Solutions of Hydroxyethylcellulose and Its<br>Hydrophobically Modified Analogue in the Presence of a Cyclodextrin Derivative. Journal of Physical<br>Chemistry B, 2006, 110, 6601-6608. | 1.2 | 42        |
| 110 | Characterization of Thermally Sensitive Interactions in Aqueous Mixtures of Hydrophobically<br>Modified Hydroxyethylcellulose and Cyclodextrins. Langmuir, 2006, 22, 9023-9029.                                                     | 1.6 | 11        |
| 111 | Dynamical and structural behavior of hydroxyethylcellulose hydrogels obtained by chemical gelation. Polymer International, 2006, 55, 365-374.                                                                                       | 1.6 | 19        |
| 112 | Effect of solvent composition on the association behavior of pectin in methanol–water mixtures.<br>European Polymer Journal, 2006, 42, 1164-1172.                                                                                   | 2.6 | 9         |
| 113 | Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in<br>dilute aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278,<br>166-174.                 | 2.3 | 59        |
| 114 | Structure and dynamics of aqueous mixtures of an anionic cellulose derivative and anionic or cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 40-49.                              | 2.3 | 25        |
| 115 | The effect of riboflavin-photoinduced degradation of alginate matrices on the diffusion of poly(oxyethylene) probes in the polymer network. European Polymer Journal, 2006, 42, 3050-3058.                                          | 2.6 | 14        |
| 116 | Rheological properties of pH-induced association and gelation of pectin. Polymer Bulletin, 2006, 56, 239-246.                                                                                                                       | 1.7 | 20        |
| 117 | Characterization of Gelation of Aqueous Pectin via the Ugi Multicomponent Condensation Reaction.<br>Polymer Bulletin, 2006, 56, 579-589.                                                                                            | 1.7 | 16        |
| 118 | Effects of the Quantity and Structure of Hydrophobes on the Properties of Hydrophobically Modified Alginates in Aqueous Solutions. Polymer Bulletin, 2006, 57, 563-574.                                                             | 1.7 | 28        |
| 119 | Association under shear flow in aqueous solutions of pectin. European Polymer Journal, 2005, 41, 761-770.                                                                                                                           | 2.6 | 66        |
| 120 | Effects of pH on dynamics and rheology during association and gelation via the Ugi reaction of aqueous alginate. European Polymer Journal, 2005, 41, 1708-1717.                                                                     | 2.6 | 52        |
| 121 | Structural and dynamical properties of aqueous mixtures of pectin and chitosan. European Polymer<br>Journal, 2005, 41, 1718-1728.                                                                                                   | 2.6 | 25        |
| 122 | Phase separation and structural properties of semidilute aqueous mixtures of<br>ethyl(hydroxyethyl)cellulose and an ionic surfactant. European Polymer Journal, 2005, 41, 1954-1964.                                                | 2.6 | 30        |
| 123 | Effect of Shear on Intramolecular and Intermolecular Association during Cross-Linking of<br>Hydroxyethylcellulose in Dilute Aqueous Solutions. Journal of Physical Chemistry B, 2005, 109,<br>12329-12336.                          | 1.2 | 30        |
| 124 | Effects of Surfactant and Temperature on Rheological and Structural Properties of Semidilute<br>Aqueous Solutions of Unmodified and Hydrophobically Modified Alginate. Langmuir, 2005, 21,<br>10923-10930.                          | 1.6 | 58        |
| 125 | Effects of β-Cyclodextrin Addition and Temperature on the Modulation of Hydrophobic Interactions in Aqueous Solutions of an Associative Alginate. Biomacromolecules, 2005, 6, 3129-3136.                                            | 2.6 | 14        |
| 126 | Physical Properties of Aqueous Solutions of a Thermo-Responsive Neutral Copolymer and an Anionic<br>Surfactant:  Turbidity and Small-Angle Neutron Scattering Studies. Langmuir, 2005, 21, 8010-8018.                               | 1.6 | 14        |

| #   | Article                                                                                                                                                                                                                                    | IF                 | CITATIONS            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 127 | Viscoelastic and structural properties of pharmaceutical hydrogels containing monocaprin.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 333-342.                                                                    | 2.0                | 30                   |
| 128 | Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 501-510.                                                       | 2.0                | 15                   |
| 129 | Association in Aqueous Solutions of a Thermoresponsive PVCL-g-C11EO42 Copolymer.<br>Macromolecules, 2005, 38, 948-960.                                                                                                                     | 2.2                | 63                   |
| 130 | Characterization of Riboflavin-Photosensitized Changes in Aqueous Solutions of Alginate by Dynamic<br>Light Scattering. Macromolecular Bioscience, 2004, 4, 76-83.                                                                         | 2.1                | 4                    |
| 131 | Rheological and structural properties of aqueous solutions of a hydrophobically modified polyelectrolyte and its unmodified analogue. European Polymer Journal, 2004, 40, 721-733.                                                         | 2.6                | 20                   |
| 132 | Temperature-induced association and gelation of aqueous solutions of pectin. A dynamic light scattering study. European Polymer Journal, 2004, 40, 2427-2435.                                                                              | 2.6                | 29                   |
| 133 | Rheological Characterization of Photochemical Changes of Ethyl(hydroxyethyl)cellulose Dissolved in Water in the Presence of an Ionic Surfactant and a Photosensitizer. Biomacromolecules, 2004, 5, 610-617.                                | 2.6                | 8                    |
| 134 | Rheological and Structural Properties of Aqueous Alginate during Gelation via the Ugi<br>Multicomponent Condensation Reaction. Biomacromolecules, 2004, 5, 1470-1479.                                                                      | 2.6                | 86                   |
| 135 | Influence of concentration and molecular weight on the photosensitized degradation of alginate in aqueous solutions. Polymer Bulletin, 2003, 50, 373-380.                                                                                  | 1.7                | 6                    |
| 136 | Characterisation of thermally controlled chain association in aqueous solutions of poly(N-isopropyl) Tj ETQq0 0 (<br>2003, 228, 75-83.                                                                                                     | ) rgBT /Ove<br>2.3 | erlock 10 Tf 5<br>38 |
| 137 | Riboflavin-Photosensitized Changes in Aqueous Solutions of Alginate. Rheological Studies.<br>Biomacromolecules, 2003, 4, 429-436.                                                                                                          | 2.6                | 24                   |
| 138 | Thermoreversible Gelation of Aqueous Mixtures of Pectin and Chitosan. Rheology.<br>Biomacromolecules, 2003, 4, 337-343.                                                                                                                    | 2.6                | 89                   |
| 139 | Characterization of Association and Gelation of Pectin in Methanol−Water Mixtures.<br>Biomacromolecules, 2003, 4, 1623-1629.                                                                                                               | 2.6                | 32                   |
| 140 | Shear-Induced Association and Gelation of Aqueous Solutions of Pectin. Journal of Physical Chemistry B, 2003, 107, 6324-6328.                                                                                                              | 1.2                | 54                   |
| 141 | Dynamics in aqueous solutions of poly(vinyl alcohol) and its hydrophobically modified anionic analogues. Polymer Bulletin, 2002, 49, 281-288.                                                                                              | 1.7                | 5                    |
| 142 | Colloid Polymer Interactions and Aggregation in Aqueous Mixtures of Polystyrene Latex, Sodium<br>Dodecyl Sulfate, and a Hydrophobically Modified Polymer:  A Dynamic Light Scattering Study. Langmuir,<br>2001, 17, 924-930.               | 1.6                | 21                   |
| 143 | Adsorption and Desorption of Unmodified and Hydrophobically Modified<br>Ethyl(hydroxyethyl)cellulose on Polystyrene Latex Particles in the Presence of Ionic Surfactants<br>Using Dynamic Light Scattering. Langmuir, 2000, 16, 4478-4484. | 1.6                | 30                   |
| 144 | Effect of Surfactant on Dynamic and Viscoelastic Properties of Aqueous Solutions of<br>Hydrophobically Modified Ethyl(hydroxyethyl)cellulose, with and without Spacer. Macromolecules,<br>2000, 33, 877-886.                               | 2.2                | 42                   |

| #   | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Dynamic light scattering on semidilute aqueous systems of ethyl (hydroxyethyl) cellulose. Effects of temperature, surfactant concentration, and salinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 347-354.                                           | 2.3 | 23        |
| 146 | Characterization of association phenomena in aqueous systems of chitosan of different<br>hydrophobicity1Part of this paper was presented at the conference on `Associating Polymer',<br>Fontevraud, France, November 1997.1. Advances in Colloid and Interface Science, 1999, 79, 81-103. | 7.0 | 118       |
| 147 | Association and Thermal Gelation in Aqueous Mixtures of Ethyl(hydroxyethyl)cellulose and Ionic<br>Surfactant:Â FTIR and Raman Study. Macromolecules, 1999, 32, 1534-1540.                                                                                                                 | 2.2 | 42        |
| 148 | Salt-Induced Aggregation of Polystyrene Latex Particles in Aqueous Solutions of a Hydrophobically<br>Modified Nonionic Cellulose Derivative and Its Unmodified Analogue. Journal of Physical Chemistry B,<br>1999, 103, 9818-9825.                                                        | 1.2 | 25        |
| 149 | Dynamics and Rheology in Aqueous Solutions of Associating Diblock and Triblock Copolymers of the<br>Same Type. Journal of Physical Chemistry B, 1999, 103, 1425-1436.                                                                                                                     | 1.2 | 43        |
| 150 | Light Scattering and Viscoelasticity in Aqueous Mixtures of Oppositely Charged and Hydrophobically<br>Modified Polyelectrolytes. Macromolecules, 1999, 32, 2974-2982.                                                                                                                     | 2.2 | 69        |
| 151 | Light Scattering Study of Semidilute Aqueous Systems of Chitosan and Hydrophobically Modified Chitosans. Macromolecules, 1998, 31, 8142-8148.                                                                                                                                             | 2.2 | 51        |
| 152 | Dynamic Viscoelasticity of Gelling and Nongelling Aqueous Mixtures of Ethyl(hydroxyethyl)cellulose and an Ionic Surfactant. Macromolecules, 1998, 31, 1852-1858.                                                                                                                          | 2.2 | 76        |
| 153 | Effects of Temperature, Surfactant Concentration, and Salinity on the Dynamics of Dilute Solutions of a Nonionic Cellulose Derivative. Langmuir, 1998, 14, 5039-5045.                                                                                                                     | 1.6 | 30        |
| 154 | Diffusion of Poly(ethylene oxide) Chains in Gelling and Nongelling Aqueous Mixtures of<br>Ethyl(hydroxyethyl)cellulose and a Surfactant by Pulsed Field Gradient NMR. Journal of Physical<br>Chemistry B, 1997, 101, 8892-8897.                                                           | 1.2 | 8         |
| 155 | Dynamic Light Scattering of a Poly(ethylene oxide)â^'Poly(propylene oxide)â^'Poly(ethylene oxide)<br>Triblock Copolymer in Water. Langmuir, 1997, 13, 4520-4526.                                                                                                                          | 1.6 | 31        |
| 156 | Viscosity of Dilute Aqueous Solutions of Hydrophobically Modified Chitosan and Its Unmodified<br>Analogue at Different Conditions of Salt and Surfactant Concentrations. Langmuir, 1997, 13, 4948-4952.                                                                                   | 1.6 | 67        |
| 157 | Effect of surfactant concentration, pH, and shear rate on the rheological properties of aqueous<br>systems of a hydrophobically modifed chitosan and its unmodified analogue. Polymer Bulletin, 1997,<br>38, 71-79.                                                                       | 1.7 | 27        |
| 158 | Linear and nonlinear rheological responses in aqueous systems of hydrophobically modified chitosan and its unmodified analogue. Polymer Bulletin, 1997, 39, 747-754.                                                                                                                      | 1.7 | 32        |
| 159 | Effects of Polymer Concentration and Cross-Linking Density on Rheology of Chemically Cross-Linked<br>Poly(vinyl alcohol) near the Gelation Threshold. Macromolecules, 1996, 29, 5215-5222.                                                                                                | 2.2 | 125       |
| 160 | Effects of Temperature, Surfactant, and Salt on the Rheological Behavior in Semidilute Aqueous<br>Systems of a Nonionic Cellulose Ether. Langmuir, 1996, 12, 3233-3240.                                                                                                                   | 1.6 | 56        |
| 161 | Dynamic Light Scattering of Poly(vinyl alcohol) Solutions and Their Dynamical Behavior during the<br>Chemical Gelation Process. Macromolecules, 1996, 29, 7116-7123.                                                                                                                      | 2.2 | 46        |