
Margreet A Wolfert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9509818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 3- <i>O</i> -sulfation of heparan sulfate modulates protein binding and lyase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
2	Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Central Science, 2021, 7, 1009-1018.	5.3	113
3	Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathogens, 2020, 16, e1008816.	2.1	19
4	Chemoenzymatic Synthesis of <i>Campylobacter jejuni</i> Lipo-oligosaccharide Core Domains to Examine Guillain–Barré Syndrome Serum Antibody Specificities. Journal of the American Chemical Society, 2020, 142, 19611-19621.	6.6	27
5	Mono―and Diâ€Fucosylated Glycans of the Parasitic Worm <i>S. mansoni</i> are Recognized Differently by the Innate Immune Receptor DCâ€SIGN. Chemistry - A European Journal, 2020, 26, 15605-15612.	1.7	8
6	Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Organic and Biomolecular Chemistry, 2019, 17, 7304-7308.	1.5	15
7	Protectingâ€Groupâ€Controlled Enzymatic Glycosylation of Oligo―N â€Acetyllactosamine Derivatives. Angewandte Chemie, 2019, 131, 10657-10662.	1.6	6
8	N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 2019, 27, 3284-3294.e6.	2.9	78
9	Protectingâ€Groupâ€Controlled Enzymatic Glycosylation of Oligoâ€ <i>N</i> â€Acetyllactosamine Derivatives. Angewandte Chemie - International Édition, 2019, 58, 10547-10552.	7.2	27
10	Synthesis and Immunological Evaluation of a Multicomponent Cancer Vaccine Candidate Containing a Long MUC1 Glycopeptide. ChemBioChem, 2018, 19, 121-125.	1.3	14
11	Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6954-6959.	3.3	118
12	Heparan Sulfate Microarray Reveals That Heparan Sulfate–Protein Binding Exhibits Different Ligand Requirements. Journal of the American Chemical Society, 2017, 139, 9534-9543.	6.6	106
13	MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS ONE, 2016, 11, e0145920.	1.1	31
14	Controlled Multiâ€functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells. Chemistry - A European Journal, 2016, 22, 1415-1423.	1.7	24
15	Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chemical Science, 2016, 7, 2294-2301.	3.7	35
16	Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chemical Communications, 2015, 51, 10214-10217.	2.2	51
17	A multifunctional anomeric linker for the chemoenzymatic synthesis of complex oligosaccharides. Chemical Communications, 2014, 50, 7132-7135.	2.2	34
18	Immune and Anticancer Responses Elicited by Fully Synthetic Aberrantly Glycosylated MUC1 Tripartite Vaccines Modified by a TLR2 or TLR9 Agonist, ChemBioChem, 2014, 15, 1508-1513.	1.3	60

MARGREET A WOLFERT

#	Article	IF	CITATIONS
19	Adaptive immune activation: glycosylation does matter. Nature Chemical Biology, 2013, 9, 776-784.	3.9	250
20	Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10207-10212.	3.3	29
21	Selective Exoâ€Enzymatic Labeling of Nâ€Glycans on the Surface of Living Cells by Recombinant ST6Galâ€I. Angewandte Chemie - International Edition, 2013, 52, 13012-13015.	7.2	83
22	Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 261-266.	3.3	278
23	Polar Dibenzocyclooctynes for Selective Labeling of Extracellular Glycoconjugates of Living Cells. Journal of the American Chemical Society, 2012, 134, 5381-5389.	6.6	82
24	Chemical Synthesis and Immunological Evaluation of the Inner Core Oligosaccharide of Francisella tularensis. Journal of the American Chemical Society, 2012, 134, 14255-14262.	6.6	54
25	Multifunctional Surface Modification of Gold-Stabilized Nanoparticles by Bioorthogonal Reactions. Journal of the American Chemical Society, 2011, 133, 11147-11153.	6.6	54
26	Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including \hat{l}_{\pm} -actinin 4. Clinical Proteomics, 2011, 8, 15.	1.1	33
27	Strainâ€Promoted Alkyne–Azide Cycloadditions (SPAAC) Reveal New Features of Glycoconjugate Biosynthesis. ChemBioChem, 2011, 12, 1912-1921.	1.3	132
28	Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, 443-454.	0.7	115
29	Chemical Synthesis and Proinflammatory Responses of Monophosphoryl Lipid A Adjuvant Candidates. European Journal of Organic Chemistry, 2010, 2010, 80-91.	1.2	23
30	Surface Modification of Polymeric Micelles by Strainâ€Promoted Alkyne–Azide Cycloadditions. Chemistry - A European Journal, 2010, 16, 13360-13366.	1.7	22
31	Protein Modification by Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2010, 49, 3065-3068.	7.2	193
32	Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nature Chemical Biology, 2010, 6, 338-343.	3.9	163
33	Differential Induction of Innate Immune Responses by Synthetic Lipid A Derivatives*. Journal of Biological Chemistry, 2010, 285, 29375-29386.	1.6	48
34	Surface Functionalization Using Catalyst-Free Azideâ^'Alkyne Cycloaddition. Bioconjugate Chemistry, 2010, 21, 2076-2085.	1.8	205
35	Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria. Journal of Biological Chemistry, 2009, 284, 8643-8653.	1.6	82
36	Increasing the Antigenicity of Synthetic Tumorâ€Associated Carbohydrate Antigens by Targeting Tollâ€Like Receptors. ChemBioChem, 2009, 10, 455-463.	1.3	91

MARGREET A WOLFERT

#	Article	IF	CITATIONS
37	Selective Labeling of Living Cells by a Photo-Triggered Click Reaction. Journal of the American Chemical Society, 2009, 131, 15769-15776.	6.6	341
38	Chemical Synthesis and Immunological Properties of Oligosaccharides Derived from the Vegetative Cell Wall of <i>Bacillus anthracis</i> . ChemBioChem, 2008, 9, 1716-1720.	1.3	21
39	Innate Immune Responses of Synthetic Lipid A Derivatives of <i>Neisseria meningitidis</i> . Chemistry - A European Journal, 2008, 14, 558-569.	1.7	56
40	Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copperâ€Free and Fast Huisgen Cycloadditions. Angewandte Chemie - International Edition, 2008, 47, 2253-2255.	7.2	825
41	Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Organic and Biomolecular Chemistry, 2008, 6, 3371.	1.5	42
42	Modification of the Structure of Peptidoglycan Is a Strategy To Avoid Detection by Nucleotide-Binding Oligomerization Domain Protein 1. Infection and Immunity, 2007, 75, 706-713.	1.0	41
43	Agonistic and antagonistic properties of a Rhizobium sin-1 lipid A modified by an ether-linked lipid. Organic and Biomolecular Chemistry, 2007, 5, 2087.	1.5	17
44	Modulation of Innate Immune Responses with Synthetic Lipid A Derivatives. Journal of the American Chemical Society, 2007, 129, 5200-5216.	6.6	67
45	The influence of the long chain fatty acid on the antagonistic activities of Rhizobium sin-1 lipid A. Bioorganic and Medicinal Chemistry, 2007, 15, 4800-4812.	1.4	11
46	Robust immune responses elicited by a fully synthetic three-component vaccine. Nature Chemical Biology, 2007, 3, 663-667.	3.9	309
47	The 2-Aminogluconate Isomer of Rhizobium sin-1 Lipid A Can Antagonize TNF-α Production Induced by Enteric LPS. ChemBioChem, 2006, 7, 140-148.	1.3	10
48	Synthesis and Proinflammatory Properties of Muramyl Tripeptides Containing Lysine and Diaminopimelic Acid Moieties. ChemBioChem, 2005, 6, 2088-2097.	1.3	42
49	Synthesis and Biological Evaluation of a Lipid A Derivative That Contains an Aminogluconate Moiety. Chemistry - A European Journal, 2004, 10, 4798-4807.	1.7	19
50	Synthesis and Biological Evaluation of Rhizobium sin-1 Lipid A Derivatives. Journal of the American Chemical Society, 2003, 125, 6103-6112.	6.6	44
51	The Origin of the Synergistic Effect of Muramyl Dipeptide with Endotoxin and Peptidoglycan. Journal of Biological Chemistry, 2002, 277, 39179-39186.	1.6	129
52	Synthesis and Proinflammatory Effects of Peptidoglycan-Derived Neoglycopeptide Polymers. Journal of the American Chemical Society, 2001, 123, 8145-8146.	6.6	20
53	Human homologs of the Xenopus oocyte cortical granule lectin XL35. Glycobiology, 2001, 11, 65-73.	1.3	96
54	DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. Journal of Controlled Release, 2000, 65, 149-171.	4.8	127

#	Article	IF	CITATIONS
55	Decreased Binding to Proteins and Cells of Polymeric Gene Delivery Vectors Surface Modified with a Multivalent Hydrophilic Polymer and Retargeting through Attachment of Transferrin. Journal of Biological Chemistry, 2000, 275, 3793-3802.	1.6	148
56	Self-assembling poly(l-lysine)/DNA complexes capable of integrin-mediated cellular uptake and gene expression. Colloids and Surfaces B: Biointerfaces, 1999, 16, 261-272.	2.5	10
57	Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Therapy, 1999, 6, 643-650.	2.3	377
58	Polyelectrolyte Vectors for Gene Delivery:Â Influence of Cationic Polymer on Biophysical Properties of Complexes Formed with DNA. Bioconjugate Chemistry, 1999, 10, 993-1004.	1.8	239
59	Chloroquine and amphipathic peptide helices show synergistic transfection in vitro. Gene Therapy, 1998, 5, 409-414.	2.3	94
60	Novel vectors for gene delivery formed by self-assembly of DNA with poly(l-lysine) grafted with hydrophilic polymers. Biochimica Et Biophysica Acta - General Subjects, 1998, 1380, 354-368.	1.1	235
61	Lipid-Mediated Enhancement of Transfection by a Nonviral Integrin-Targeting Vector. Human Gene Therapy, 1998, 9, 575-585.	1.4	183
62	Characterization of Vectors for Gene Therapy Formed by Self-Assembly of DNA with Synthetic Block Co-Polymers. Human Gene Therapy, 1996, 7, 2123-2133.	1.4	370