Brett Trost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9509703/publications.pdf

Version: 2024-02-01

218381 253896 2,251 58 26 43 citations h-index g-index papers 67 67 67 3681 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. Genes, 2022, 13, 470.	1.0	3
2	Biallelic PAN2 variants in individuals with a syndromic neurodevelopmental disorder and multiple congenital anomalies. European Journal of Human Genetics, 2022, 30, 611-618.	1.4	4
3	Genome-wide tandem repeat expansions contribute to schizophrenia risk. Molecular Psychiatry, 2022, 27, 3692-3698.	4.1	20
4	Chromosomal-level reference genome assembly of the North American wolverine (<i>Gulo gulo) Tj ETQq0 0 0 rgl</i>	BT /Overlo	ck 10 Tf 50 62
5	Enrichment of loss-of-function and copy number variants in ventricular cardiomyopathy genes in †lone' atrial fibrillation. Europace, 2021, 23, 844-850.	0.7	15
6	An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Frontiers in Neurology, 2021, 12, 612817.	1.1	5
7	Discovery of genomic variation across a generation. Human Molecular Genetics, 2021, 30, R174-R186.	1.4	9
8	A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. Npj Genomic Medicine, 2021, 6, 91.	1.7	9
9	Genome Sequencing as a Diagnostic Test in Children With Unexplained Medical Complexity. JAMA Network Open, 2020, 3, e2018109.	2.8	47
10	Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 2020, 586, 80-86.	13.7	155
11	Clinical and associated inflammatory biomarker features predictive of short-term outcomes in non-systemic juvenile idiopathic arthritis. Rheumatology, 2020, 59, 2402-2411.	0.9	11
12	ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biology, 2020, 21, 102.	3.8	114
13	Associations of clinical and inflammatory biomarker clusters with juvenile idiopathic arthritis categories. Rheumatology, 2020, 59, 1066-1075.	0.9	9
14	A large data resource of genomic copy number variation across neurodevelopmental disorders. Npj Genomic Medicine, 2019, 4, 26.	1.7	118
15	Impact of DNA source on genetic variant detection from human whole-genome sequencing data. Journal of Medical Genetics, 2019, 56, 809-817.	1.5	32
16	Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease. American Journal of Human Genetics, 2019, 104, 1116-1126.	2.6	130
17	Glutaminase Deficiency Caused by Short Tandem Repeat Expansion in <i>GLS</i> . New England Journal of Medicine, 2019, 380, 1433-1441.	13.9	71
18	The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants. Cmaj, 2018, 190, E126-E136.	0.9	57

#	Article	IF	CITATIONS
19	A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation from Whole-Genome Sequence Data. American Journal of Human Genetics, 2018, 102, 142-155.	2.6	156
20	Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics, 2018, 19, 23.	1.2	96
21	Conservation of kinase-phosphorylation site pairings: Evidence for an evolutionarily dynamic phosphoproteome. PLoS ONE, 2018, 13, e0202036.	1.1	6
22	Technological advances for interrogating the human kinome. Biochemical Society Transactions, 2017, 45, 65-77.	1.6	26
23	<i>De Novo</i> Genome and Transcriptome Assembly of the Canadian Beaver (<i>Castor canadensis</i>). G3: Genes, Genomes, Genetics, 2017, 7, 755-773.	0.8	18
24	Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites. PLoS ONE, 2016, 11, e0152809.	1.1	9
25	DAPPLE 2: a Tool for the Homology-Based Prediction of Post-Translational Modification Sites. Journal of Proteome Research, 2016, 15, 2760-2767.	1.8	20
26	Investigation of the cause of geographic disparities in IDEXX ELISA sensitivity in serum samples from Mycobacterium bovis-infected cattle. Scientific Reports, 2016, 6, 22763.	1.6	20
27	Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts. Royal Society Open Science, 2015, 2, 150402.	1.1	20
28	Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Nucleus, 2015, 6, 490-506.	0.6	16
29	Characterization of the Host Response to Pichinde Virus Infection in the Syrian Golden Hamster by Species-Specific Kinome Analysis. Molecular and Cellular Proteomics, 2015, 14, 646-657.	2.5	16
30	Induction of tissue- and stressor-specific kinomic responses in chickens exposed to hot and cold stresses. Poultry Science, 2015, 94, 1333-1345.	1.5	24
31	EpIC: a rational pipeline for epitope immunogenicity characterization. Bioinformatics, 2015, 31, 2388-2390.	1.8	11
32	Case study: using sequence homology to identify putative phosphorylation sites in an evolutionarily distant species (honeybee). Briefings in Bioinformatics, 2015, 16, 820-829.	3.2	5
33	Peptide Arrays for Kinome Analysis of Livestock Species. Frontiers in Veterinary Science, 2014, 1, 4.	0.9	11
34	A Comparison of the Chicken and Turkey Proteomes and Phosphoproteomes in the Development of Poultry-Specific Immuno-Metabolism Kinome Peptide Arrays. Frontiers in Veterinary Science, 2014, 1, 22.	0.9	29
35	Identification of developmentally-specific kinotypes and mechanisms of Varroa mite resistance through whole-organism, kinome analysis of honeybee. Frontiers in Genetics, 2014, 5, 139.	1.1	40
36	Equivalent input produces different output in the UniFrac significance test. BMC Bioinformatics, 2014, 15, 278.	1.2	4

#	Article	IF	Citations
37	Ebola Virus Modulates Transforming Growth Factor \hat{l}^2 Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes. Journal of Virology, 2014, 88, 9877-9892.	1.5	49
38	A better sequence-read simulator program for metagenomics. BMC Bioinformatics, 2014, 15, S14.	1.2	43
39	Divergent Immune Responses to Mycobacterium avium subsp. paratuberculosis Infection Correlate with Kinome Responses at the Site of Intestinal Infection. Infection and Immunity, 2013, 81, 2861-2872.	1.0	33
40	Kinotypes: stable species- and individual-specific profiles of cellular kinase activity. BMC Genomics, 2013, 14, 854.	1.2	17
41	Computational phosphorylation site prediction in plants using random forests and organism-specific instance weights. Bioinformatics, 2013, 29, 686-694.	1.8	46
42	DAPPLE: a pipeline for the homology-based prediction of phosphorylation sites. Bioinformatics, 2013, 29, 1693-1695.	1.8	37
43	PIIKA 2: An Expanded, Web-Based Platform for Analysis of Kinome Microarray Data. PLoS ONE, 2013, 8, e80837.	1.1	60
44	Systems Kinomics Demonstrates Congo Basin Monkeypox Virus Infection Selectively Modulates Host Cell Signaling Responses as Compared to West African Monkeypox Virus. Molecular and Cellular Proteomics, 2012, 11, M111.015701.	2.5	59
45	A Systematic Approach for Analysis of Peptide Array Kinome Data. Science Signaling, 2012, 5, pl2.	1.6	53
46	Complete Genome Sequence of the Beer Spoilage Organism Pediococcus claussenii ATCC BAA-344T. Journal of Bacteriology, 2012, 194, 1271-1272.	1.0	40
47	Comparing the Similarity of Different Groups of Bacteria to the Human Proteome. PLoS ONE, 2012, 7, e34007.	1.1	6
48	Pentamers Not Found in the Universal Proteome Can Enhance Antigen Specific Immune Responses and Adjuvant Vaccines. PLoS ONE, 2012, 7, e43802.	1.1	28
49	Computational prediction of eukaryotic phosphorylation sites. Bioinformatics, 2011, 27, 2927-2935.	1.8	145
50	The oligodeoxynucleotide sequences corresponding to never-expressed peptide motifs are mainly located in the non-coding strand. BMC Bioinformatics, 2010, 11, 383.	1.2	12
51	Analysis and comparison of the pan-genomic properties of sixteen well-characterized bacterial genera. BMC Microbiology, 2010, 10, 258.	1.3	9
52	Bacterial peptides are intensively present throughout the human proteome. Self/nonself, 2010, 1, 71-74.	2.0	26
53	No human protein is exempt from bacterial motifs, not even one. Self/nonself, 2010, 1, 328-334.	2.0	69
54	Statistical characterization of the GxxxG glycine repeats in the flagellar biosynthesis protein FliH and its Type III secretion homologue YscL. BMC Microbiology, 2009, 9, 72.	1.3	4

BRETT TROST

#	Article	IF	CITATIONS
55	Codon number shapes peptide redundancy in the universal proteome composition. Peptides, 2009, 30, 1940-1944.	1.2	16
56	Rare peptide segments are found significantly more often in proto-oncoproteins than control proteins: implications for immunology and oncology. Journal of the Royal Society Interface, 2009, 6, 123-127.	1.5	7
57	Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Research, 2007, 3, 5.	0.1	56
58	Peptidology: short amino acid modules in cell biology and immunology. Amino Acids, 2007, 33, 703-707.	1.2	89