
Jiaqi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9509671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and durability performance of sustainable cementitious composites containing high-volume regenerative biosilica. Resources, Conservation and Recycling, 2022, 178, 106038.	5.3	18
2	Phase evolution, micromechanical properties, and morphology of calcium (alumino)silicate hydrates C-(A-)S-H under carbonation. Cement and Concrete Research, 2022, 152, 106683.	4.6	34
3	The first experimental evidence for improved nanomechanical properties of calcium silicate hydrate by polycarboxylate ether and graphene oxide. Cement and Concrete Research, 2022, 156, 106787.	4.6	15
4	The nanomechanical properties of non-crosslinked calcium aluminosilicate hydrate: The influences of tetrahedral Al and curing age. Cement and Concrete Research, 2022, 159, 106900.	4.6	10
5	Microstructure and water absorption of ancient concrete from Pompeii: An integrated synchrotron microtomography and neutron radiography characterization. Cement and Concrete Research, 2021, 139, 106282.	4.6	24
6	3D Nanotomography of calcium silicate hydrates by transmission electron microscopy. Journal of the American Ceramic Society, 2021, 104, 1852-1862.	1.9	9
7	Effect of polycarboxylate ether on the expansion of ye'elimite hydration in the presence of anhydrite. Cement and Concrete Research, 2021, 140, 106321.	4.6	28
8	Coordination environment of Si in calcium silicate hydrates, silicate minerals, and blast furnace slags: A XANES database. Cement and Concrete Research, 2021, 143, 106376.	4.6	27
9	Preferred orientation of calcium aluminosilicate hydrate compacts: Implications for creep and indentation. Cement and Concrete Research, 2021, 143, 106371.	4.6	44
10	Plastic deformation mechanism of calcium-silicate hydrates determined by deviatoric-stress Raman spectroscopy. Cement and Concrete Research, 2021, 146, 106476.	4.6	19
11	Sequestration of solid carbon in concrete: A large-scale enabler of lower-carbon intensity hydrogen from natural gas. MRS Bulletin, 2021, 46, 680-686.	1.7	10
12	Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice. Buildings, 2021, 11, 495.	1.4	15
13	Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite. Cement and Concrete Research, 2020, 136, 106170.	4.6	58
14	Mechanical properties of struvite-K: A high-pressure X-ray diffraction study. Cement and Concrete Research, 2020, 136, 106171.	4.6	28
15	Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand. Cement and Concrete Research, 2020, 137, 106195.	4.6	75
16	Structure and Intrinsic Mechanical Properties of Nanocrystalline Calcium Silicate Hydrate. ACS Sustainable Chemistry and Engineering, 2020, 8, 12453-12461.	3.2	57
17	Silicate Bond Characteristics in Calcium–Silicate–Hydrates Determined by High Pressure Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 18335-18345.	1.5	19
18	Influencing factors on micromechanical properties of calcium (alumino) silicate hydrate C-(A-)S-H under nanoindentation experiment. Cement and Concrete Research, 2020, 134, 106088.	4.6	56

Jiaqi Li

#	Article	IF	CITATIONS
19	Synchrotron X-ray Raman scattering shows the changes of the Ca environment in C-S-H exposed to high pressure. Cement and Concrete Research, 2020, 132, 106066.	4.6	24
20	Understanding the sulfate attack of Portland cement–based materials exposed to applied electric fields: Mineralogical alteration and migration behavior of ionic species. Cement and Concrete Composites, 2020, 111, 103630.	4.6	31
21	Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. Journal of Cleaner Production, 2020, 261, 121224.	4.6	59
22	Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research, 2019, 124, 105806.	4.6	104
23	Influence of decalcification on structural and mechanical properties of synthetic calcium silicate hydrate (C-S-H). Cement and Concrete Research, 2019, 123, 105793.	4.6	64
24	Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. Journal of Cleaner Production, 2019, 223, 662-679.	4.6	99
25	Non-destructive mapping of water distribution through white-beam and energy-resolved neutron imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927, 174-183.	0.7	6
26	The Hydration of β- and α′ _H -Dicalcium Silicates: An X-ray Spectromicroscopic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 2316-2326.	3.2	42
27	The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering. Cement and Concrete Research, 2019, 115, 367-378.	4.6	104
28	A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste. Cement and Concrete Research, 2018, 108, 38-45.	4.6	24
29	Preferred orientation of calcium aluminosilicate hydrate induced by confined compression. Cement and Concrete Research, 2018, 113, 186-196.	4.6	63
30	Modification of incorporation and in-situ polymerization of aniline on the nano-structure and meso-structure of calcium silicate hydrates. Construction and Building Materials, 2018, 182, 459-468.	3.2	31
31	Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 2017, 7, 44032.	1.6	122
32	Nanometer-Resolved Spectroscopic Study Reveals the Conversion Mechanism of CaO·Al ₂ O ₃ ·10H ₂ O to 2CaO·Al ₂ O ₃ ·8H ₂ O and 3CaO·Al ₂ O ₃ ·6H ₂ O at an Elevated Temperature. Crystal Growth	1.4	44
33	and Design, 2017, 17, 4246-4253. Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: a case study of tobermorite. Physical Chemistry Chemical Physics, 2017, 19, 15145-15159.	1.3	37
34	Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution. Langmuir, 2017, 33, 45-55.	1.6	93
35	Effects of CO ₂ and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Advances, 2017, 7, 48925-48933.	1.7	70
36	Experimental Study of Retrofitted Cracked Concrete with FRP and Nanomodified Epoxy Resin. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	33

Jiaqi Li

#	Article	IF	CITATIONS
37	Bond properties of FRP-concrete interface with nano-modified epoxy resin under wet-dry cycles. KSCE Journal of Civil Engineering, 2017, 21, 1379-1385.	0.9	28
38	Effects of fly ash and quartz sand on water-resistance and salt-resistance of magnesium phosphate cement. Construction and Building Materials, 2016, 105, 384-390.	3.2	106
39	Relationship between fracture area and tensile strength of cement paste with supplementary cementitious materials. Construction and Building Materials, 2015, 79, 223-228.	3.2	32
40	Experimental study on mechanical properties and fracture toughness of magnesium phosphate cement. Construction and Building Materials, 2015, 96, 346-352.	3.2	75
41	Experimental study of light transmitting cement-based material (LTCM). Construction and Building Materials, 2015, 96, 319-325.	3.2	38
42	Effects of fly ash, retarder and calcination of magnesia on properties of magnesia–phosphate cement. Advances in Cement Research, 2015, 27, 373-380.	0.7	38
43	Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete. Construction and Building Materials, 2014, 53, 511-516.	3.2	113