Xiaowei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9509415/publications.pdf Version: 2024-02-01

XIAOWEL XII

#	Article	IF	CITATIONS
1	Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. Journal of Colloid and Interface Science, 2022, 609, 54-64.	9.4	24
2	Carbon dots enhance extracellular matrix secretion for dentin-pulp complex regeneration through PI3K/Akt/mTOR pathway-mediated activation of autophagy. Materials Today Bio, 2022, 16, 100344.	5.5	9
3	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 50287-50302.	8.0	40
4	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Î²/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	14.9	19
5	The Toll-like receptor ligand, CpG oligodeoxynucleotides, regulate proliferation and osteogenic differentiation of osteoblast. Journal of Orthopaedic Surgery and Research, 2020, 15, 327.	2.3	10
6	CpG oligodeoxynucleotides inhibit the proliferation and osteoclastic differentiation of RAW264.7 cells. RSC Advances, 2020, 10, 14885-14891.	3.6	3
7	Synthesis of green emissive carbon dots@montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers. Journal of Colloid and Interface Science, 2019, 554, 344-352.	9.4	53
8	Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. Nanoscale, 2019, 11, 21953-21963.	5.6	15
9	An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomaterialia, 2019, 86, 235-246.	8.3	170
10	Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. International Journal of Nanomedicine, 2018, Volume 13, 187-198.	6.7	49
11	Microwave-Assisted Heating Method toward Multicolor Quantum Dot-Based Phosphors with Much Improved Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27160-27170.	8.0	21
12	Enhancing the osteogenic capacity of MG63 cells through N-isopropylacrylamide-modified polyethylenimine-mediated oligodeoxynucleotide MT01 delivery. RSC Advances, 2017, 7, 27121-27127.	3.6	5
13	Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Applied Materials & Interfaces, 2016, 8, 32706-32716.	8.0	140
14	Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Advances, 2016, 6, 34081-34089.	3.6	18
15	Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. International Journal of Nanomedicine, 2014, 9, 2179.	6.7	19
16	Characteristics of three sizes of silica nanoparticles in the osteoblastic cell line, MC3T3-E1. RSC Advances, 2014, 4, 46481-46487.	3.6	11