List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science and Technology, 2007, 18, 4-19.	7.8	808
2	Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy () pectin. Carbohydrate Polymers, 2004, 58, 391-400.	5.1	195
3	Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloids, 2012, 28, 275-283.	5.6	164
4	Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydrate Polymers, 2006, 63, 408-416.	5.1	158
5	Some physicochemical properties of sage (Salvia macrosiphon) seedÂgum. Food Hydrocolloids, 2014, 35, 453-462.	5.6	150
6	A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 131-147.	1.5	135
7	New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food Hydrocolloids, 2011, 25, 1984-1990.	5.6	122
8	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part II. Fine structures of O-acetylated residues. Carbohydrate Polymers, 2015, 117, 422-433.	5.1	114
9	Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydrate Polymers, 2011, 84, 894-899.	5.1	112
10	Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 2005, 19, 793-801.	5.6	110
11	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part I. Extraction, purification, and partial structural characterization. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 74-83.	1.5	108
12	Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 2009, 23, 1542-1547.	5.6	107
13	Cell wall polysaccharides in cereals: chemical structures and functional properties. Structural Chemistry, 2009, 20, 291-297.	1.0	105
14	Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 2019, 94, 48-56.	5.6	105
15	A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocolloids, 2013, 31, 42-48.	5.6	103
16	Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUMâ,,¢): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUMâ,,¢ arabic. Food Hydrocolloids, 2007, 21, 347-352.	5.6	102
17	Physicochemical characterization of a high molecular weight bioactive β-d-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydrate Polymers, 2014, 101, 968-974.	5.1	100
18	Covalent attachment of fenugreek gum to soy whey protein isolate through natural Maillard reaction for improved emulsion stability. Food Hydrocolloids, 2013, 30, 552-558.	5.6	92

#	Article	IF	CITATIONS
19	Emulsifying properties of soy whey protein isolate–fenugreek gum conjugates in oil-in-water emulsion model system. Food Hydrocolloids, 2013, 30, 691-697.	5.6	84
20	Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocolloids, 2017, 67, 139-147.	5.6	82
21	Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocolloids, 2016, 57, 30-37.	5.6	80
22	Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 831-836.	5.1	79
23	Non-starch polysaccharides from American ginseng: physicochemical investigation and structural characterization. Food Hydrocolloids, 2015, 44, 320-327.	5.6	78
24	Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala Krasch. Carbohydrate Research, 2012, 350, 31-39.	1.1	73
25	New studies on gum ghatti (Anogeissus latifolia) part II. Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1991-1998.	5.6	71
26	A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 2015, 63, 2-7.	2.5	71
27	Protective effect of three glucomannans from different plants against DSS induced colitis in female BALB/c mice. Food and Function, 2019, 10, 1928-1939.	2.1	71
28	Purification and partial physicochemical characteristics of protein free fenugreek gums. Food Hydrocolloids, 2009, 23, 2049-2053.	5.6	68
29	Fenugreek fibre in bread: Effects on dough development and bread quality. LWT - Food Science and Technology, 2016, 71, 274-280.	2.5	68
30	Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum. International Journal of Biological Macromolecules, 2015, 79, 248-255.	3.6	65
31	Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. International Journal of Biological Macromolecules, 2016, 83, 142-151.	3.6	64
32	New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1999-2007.	5.6	63
33	Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 38-52.	1.5	63
34	Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydrate Research, 2012, 362, 47-55.	1.1	62
35	Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds. Carbohydrate Polymers, 2007, 70, 437-443.	5.1	59
36	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part VI. Protective effects against oxidative stress in immunosuppressed mice. Food Research International, 2015, 72, 168-173.	2.9	59

#	Article	IF	CITATIONS
37	Methylation and 2D NMR analysis of arabinoxylan from the seeds of Plantago asiatica L Carbohydrate Polymers, 2012, 88, 1395-1401.	5.1	55
38	The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic). Food Hydrocolloids, 2013, 32, 221-227.	5.6	54
39	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): Part IV. Immunomodulatory activity in vivo. Journal of Functional Foods, 2015, 15, 525-532.	1.6	53
40	Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure. Carbohydrate Polymers, 2017, 158, 58-67.	5.1	52
41	Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. International Journal of Biological Macromolecules, 2018, 114, 1064-1070.	3.6	48
42	Conformational properties of a bioactive polysaccharide from Ganoderma atrum by light scattering and molecular modeling. Food Hydrocolloids, 2018, 84, 16-25.	5.6	48
43	Pectic polysaccharides from hawthorn: Physicochemical and partial structural characterization. Food Hydrocolloids, 2019, 90, 146-153.	5.6	47
44	The influence of fenugreek gum and extrusion modified fenugreek gum on bread. Food Hydrocolloids, 2012, 26, 350-358.	5.6	46
45	Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocolloids, 2022, 123, 107049.	5.6	46
46	Structure characteristics and rheological properties of acidic polysaccharide from boat-fruited sterculia seeds. Carbohydrate Polymers, 2012, 88, 926-930.	5.1	45
47	Conformational properties of high molecular weight heteropolysaccharide isolated from seeds of Artemisia sphaerocephala Krasch. Food Hydrocolloids, 2013, 32, 155-161.	5.6	44
48	Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chemistry, 2018, 254, 266-271.	4.2	44
49	Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. Food Research International, 2014, 56, 166-173.	2.9	43
50	Synergisms between yellow mustard mucilage and galactomannans and applications in food products — A mini review. Advances in Colloid and Interface Science, 2006, 128-130, 249-256.	7.0	42
51	Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk. Food Hydrocolloids, 2016, 56, 134-143.	5.6	42
52	Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis. Food Science and Biotechnology, 2017, 26, 55-62.	1.2	42
53	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part Ill–Immunomodulatory activity in vitro. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 99-105.	1.5	38
54	Structure characterization of high molecular weight heteropolysaccharide isolated from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 742-746.	5.1	37

#	Article	IF	CITATIONS
55	A novel emulsifier prepared from Acacia seyal polysaccharide through Maillard reaction with casein peptides. Food Hydrocolloids, 2017, 69, 236-241.	5.6	35
56	Understanding the structure–emulsification relationship of gum ghatti – A review of recent advances. Food Hydrocolloids, 2014, 42, 187-195.	5.6	34
57	Arabinan-rich rhamnogalacturonan-I from flaxseed kernel cell wall. Food Hydrocolloids, 2015, 47, 158-167.	5.6	34
58	Bacterial spoilage profiles in the gills of Pacific oysters (Crassostrea gigas) and Eastern oysters (C.) Tj ETQq0 0 0	rgBT /Ove	erlogg 10 Tf 50
59	Polysaccharides from sunflower stalk pith: Chemical, structural and functional characterization. Food Hydrocolloids, 2020, 100, 105082.	5.6	31
60	Antioxidant effects of Artemis sphaerocephala Krasch. gum, on streptozotocin-induced type 2 diabetic rats. Food Hydrocolloids, 2011, 25, 207-213.	5.6	30
61	Rheological properties of β-d-glucan from the fruiting bodies of Ganoderma lucidum. Food Hydrocolloids, 2016, 58, 120-125.	5.6	30
62	Gelation mechanism of polysaccharides from Auricularia auricula-judae. Food Hydrocolloids, 2018, 76, 35-41.	5.6	30
63	Effects of pentosanase and glucose oxidase on the composition, rheology and microstructure of whole wheat dough. Food Hydrocolloids, 2018, 84, 545-551.	5.6	30
64	Plant-derived glucomannans: Sources, preparation methods, structural features, and biological properties. Trends in Food Science and Technology, 2020, 99, 101-116.	7.8	30
65	Structure and biological activities of a pectic polysaccharide from Mosla chinensis Maxim. cv. Jiangxiangru. Carbohydrate Polymers, 2014, 105, 276-284.	5.1	29
66	Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydrate Polymers, 2016, 151, 538-545.	5.1	26
67	Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocolloids, 2018, 78, 77-91.	5.6	25
68	Structural characterization and conformational properties of a polysaccharide isolated from Dendrobium nobile Lindl Food Hydrocolloids, 2020, 98, 104904.	5.6	25
69	Short-chain fatty acid profiles from flaxseed dietary fibres after in vitro fermentation of pig colonic digesta: Structure–function relationship. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 62-68.	1.5	21
70	Structural Characterization and Chain Conformation of Water-Soluble β-Glucan from Wild <i>Cordyceps sinensis</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 12520-12527.	2.4	21
71	Structural investigation of a glycoprotein from gum ghatti. Carbohydrate Polymers, 2012, 89, 749-758.	5.1	19
72	The protective effects against cyclophosphamide (CTX)-induced immunosuppression of three glucomannans. Food Hydrocolloids, 2020, 100, 105445.	5.6	16

5

#	Article	IF	CITATIONS
73	Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioactive Carbohydrates and Dietary Fibre, 2022, 27, 100301.	1.5	16
74	Study of conformational properties of cereal β-glucans by computer modeling. Food Hydrocolloids, 2012, 26, 377-382.	5.6	13
75	Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. Springer Briefs in Molecular Science, 2018, , 69-71.	0.1	12
76	Fermentation models of dietary fibre in vitro and in vivo - A review. Food Hydrocolloids, 2022, 131, 107685.	5.6	12
77	Physicochemical evaluation of fenugreek gum and extrusion modified fenugreek gum and effects on starch degradation in bread. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 176-183.	1.5	11
78	Structure features of the intracellular polysaccharide from Ganoderma lucidum and the irrelative immune-anticancer activities of GLPs. Bioactive Carbohydrates and Dietary Fibre, 2016, 8, 43-50.	1.5	11
79	Effects of pig colonic digesta and dietary fibres on in vitro microbial fermentation profiles. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 120-130.	1.5	9
80	New studies on gum ghatti (Anogeissuslatifolia) part 6: Physicochemical characteristics of the protein moiety of gum ghatti. Food Hydrocolloids, 2015, 44, 237-243.	5.6	7
81	A molecular modeling approach to understand the structure and conformation relationship of (Glc p) Tj ETQq1	1 0.78431	4 rgBT /Overld
82	Antioxidant hydrocolloids from herb Graptopetalum paraguayense leaves show anti-colon cancer cells and anti-neuroinflammatory potentials. Food Hydrocolloids, 2017, 73, 51-59.	5.6	6
83	Fractions from natural Cordyceps sinensis alleviated intestinal injury in cyclophosphamide-induced mice. Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100271.	1.5	4
84	Glucomannans From Dendrobium officinale and Aloe. , 2018, , 295-347.		3
85	Structure, Classification and Modification of Polysaccharides. , 2021, , 204-219.		3
86	Pectin Bioactivity. , 2020, , 165-188.		2
87	Strategies for Structural Characterization of Polysaccharides. Springer Briefs in Molecular Science, 2018, , 1-7.	0.1	1
88	Polysaccharide Extraction and Fractionation. Springer Briefs in Molecular Science, 2018, , 9-17.	0.1	1
89	MALDI-TOF-MS for Polysaccharides Analysis. Springer Briefs in Molecular Science, 2018, , 65-68.	0.1	0
90	Monosaccharide Composition Analysis. Springer Briefs in Molecular Science, 2018, , 29-36.	0.1	0

#	Article	IF	CITATIONS
91	Dendronan. , 2021, , 579-596.		0
92	Partial Acid Hydrolysis and Molecular Degradation. Springer Briefs in Molecular Science, 2018, , 37-43.	0.1	0
93	Detailed Experimental Procedures. Springer Briefs in Molecular Science, 2018, , 73-79.	0.1	0