
Franco Dominici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfonated Fe3O4/PES nanocomposites as efficient separators in microbial fuel cells. Journal of Membrane Science, 2021, 620, 118967.	4.1	16
2	Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures. Polymers, 2021, 13, 282.	2.0	7
3	Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 2021, 13, 1966.	2.0	12
4	Development and Characterization of Concrete/PCM/Diatomite Composites for Thermal Energy Storage in CSP/CST Applications. Energies, 2021, 14, 4410.	1.6	14
5	UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing Pristine and Chemically Modified Lignin Nanoparticles. Molecules, 2021, 26, 126.	1.7	51
6	Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage. Energies, 2021, 14, 7151.	1.6	1
7	Color Fixation Strategies on Sustainable Poly-Butylene Succinate Using Biobased Itaconic Acid. Polymers, 2021, 13, 79.	2.0	4
8	Effect of Pretreatment of Nanocomposite PESâ€Fe 3 O 4 Separator on Microbial Fuel Cells Performance. Polymer Engineering and Science, 2020, 60, 371-379.	1.5	7
9	Biocomposites Based on Plasticized Wheat Flours: Effect of Bran Content on Thermomechanical Behavior. Polymers, 2020, 12, 2248.	2.0	7
10	Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 2176.	1.9	24
11	Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers, 2020, 12, 2508.	2.0	9
12	Environmentally Friendly Polymers and Polymer Composites. Materials, 2020, 13, 4892.	1.3	32
13	Improving the flexibility and compostability of starch/poly(butylene cyclohexanedicarboxylate)-based blends. Carbohydrate Polymers, 2020, 246, 116631.	5.1	6
14	Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers, 2020, 12, 1451.	2.0	11
15	PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat Flour/Poly(butylene succinate) Blends. Biomacromolecules, 2020, 21, 3254-3269.	2.6	25
16	Improved Toughness in Lignin/Natural Fiber Composites Plasticized with Epoxidized and Maleinized Linseed Oils. Materials, 2020, 13, 600.	1.3	12
17	Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites. Polymers, 2020, 12, 276.	2.0	15
18	Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites. Polymers, 2020, 12, 835.	2.0	18

FRANCO DOMINICI

#	Article	IF	CITATIONS
19	Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 2019, 223, 115131.	5.1	35
20	Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules, 2019, 24, 3113.	1.7	34
21	Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 2019, 7, 157.	1.8	38
22	Maleinized Linseed Oil as Epoxy Resin Hardener for Composites with High Bio Content Obtained from Linen Byproducts. Polymers, 2019, 11, 301.	2.0	45
23	A Novel Class of Cost Effective and High Performance Composites Based on Terephthalate Salts Reinforced Polyether Ether Ketone. Polymers, 2019, 11, 2097.	2.0	6
24	Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 2018, 151, 36-51.	2.7	62
25	Recycling coffee silverskin in sustainable composites based on a poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overl Products, 2018, 118, 311-320.	ock 10 Tf 2.5	50 507 Td (a 45
26	Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 2018, 152, 162-176.	2.7	34
27	Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 2018, 152, 126-138.	2.7	81
28	Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Composites Part A: Applied Science and Manufacturing, 2018, 107, 61-69.	3.8	83
29	Effect of nanoâ€magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites. Polymer Composites, 2018, 39, E1742.	2.3	11
30	Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. European Polymer Journal, 2018, 99, 222-229.	2.6	61
31	Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 2018, 10, 1256.	2.0	36
32	Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. EXPRESS Polymer Letters, 2018, 12, 808-823.	1.1	65
33	Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, 2018, 157, 100-107.	2.7	12
34	Influence of gallic acid and umbelliferone on structural and functional properties of poly(vinyl) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 142
35	Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres. Composite Structures, 2017, 167, 20-29.	3.1	51

FRANCO DOMINICI

#	Article	IF	CITATIONS
37	Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydrate Polymers, 2017, 165, 51-60.	5.1	30
38	Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films. Industrial Crops and Products, 2017, 100, 138-145.	2.5	11
39	PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 2017, 91, 248-259.	2.6	76
40	Melt processing and mechanical property characterization of high-performance poly(ether ether) Tj ETQq0 0 0 i	gBT /Over 1.6	ock 10 Tf 50 6
41	PCM for improving polyurethane-based cool roof membranes durability. Solar Energy Materials and Solar Cells, 2017, 160, 34-42.	3.0	48
42	Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 423-434.	1.1	6
43	Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites. Journal of Renewable Materials, 2016, 4, 199-205.	1.1	15
44	Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 2016, 132, 97-108.	2.7	222
45	Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.	2.6	212
46	Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 2016, 89, 360-368.	3.6	161
47	PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.	5.1	167
48	Tensile Behavior of Thermoplastic Films from Wheat Flours as Function of Raw Material Baking Properties. Journal of Polymers and the Environment, 2016, 24, 37-47.	2.4	16
49	Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. EXPRESS Polymer Letters, 2015, 9, 583-596.	1.1	168
50	Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 2015, 121, 265-275.	5.1	276
51	Effect of different lignocellulosic fibres on poly(ε-caprolactone)-based composites for potential applications in orthotics. RSC Advances, 2015, 5, 23798-23809.	1.7	31
52	Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal, 2015, 71, 126-139.	2.6	150
53	Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.	2.5	87
54	Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Advances, 2015, 5, 32350-32357.	1.7	69

FRANCO DOMINICI

#	Article	IF	CITATIONS
55	Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Industrial Crops and Products, 2015, 77, 833-844.	2.5	84
56	The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 2015, 50, 863-872.	1.7	36
57	Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 2014, 107, 16-24.	5.1	250
58	Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: Thermal and morphological properties. Polymer Degradation and Stability, 2014, 108, 158-165.	2.7	60
59	Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 2014, 56, 77-91.	2.6	159
60	PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 2014, 107, 139-149.	2.7	243