
## Franco Dominici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508757/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate<br>Polymers, 2015, 121, 265-275.                                                                                                                                        | 10.2 | 276       |
| 2  | Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties.<br>Carbohydrate Polymers, 2014, 107, 16-24.                                                                                                                        | 10.2 | 250       |
| 3  | PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 2014, 107, 139-149.                                                                                                                               | 5.8  | 243       |
| 4  | Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 2016, 132, 97-108.                                                                                | 5.8  | 222       |
| 5  | Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.                                                                                                                | 5.4  | 212       |
| 6  | Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems.<br>EXPRESS Polymer Letters, 2015, 9, 583-596.                                                                                                                      | 2.1  | 168       |
| 7  | PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.                                                                                                      | 10.2 | 167       |
| 8  | Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 2016, 89, 360-368.                                                                                 | 7.5  | 161       |
| 9  | Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films<br>reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer<br>Journal, 2014, 56, 77-91.                                            | 5.4  | 159       |
| 10 | Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior<br>of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent<br>casting. European Polymer Journal, 2015, 71, 126-139.      | 5.4  | 150       |
| 11 | Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.                                                                                                                           | 5.2  | 87        |
| 12 | Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl<br>methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Industrial Crops<br>and Products, 2015, 77, 833-844.                            | 5.2  | 84        |
| 13 | Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA<br>nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure.<br>Composites Part A: Applied Science and Manufacturing, 2018, 107, 61-69. | 7.6  | 83        |
| 14 | Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 2018, 152, 126-138.                                                                      | 5.8  | 81        |
| 15 | PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer<br>Journal, 2017, 91, 248-259.                                                                                                                                     | 5.4  | 76        |
| 16 | Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB)<br>Films for Active Food Packaging. Food and Bioprocess Technology, 2017, 10, 770-780.                                                                                | 4.7  | 72        |
| 17 | Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid<br>films: effect of cellulose nanocrystals and a masterbatch process. RSC Advances, 2015, 5, 32350-32357.                                                         | 3.6  | 69        |
| 18 | Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives.<br>EXPRESS Polymer Letters, 2018, 12, 808-823.                                                                                                                      | 2.1  | 65        |

FRANCO DOMINICI

| #  | Article                                                                                                                                                                                                       | IF                 | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 19 | Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 2018, 151, 36-51.                           | 5.8                | 62                 |
| 20 | Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. European Polymer Journal, 2018, 99, 222-229.                                            | 5.4                | 61                 |
| 21 | Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based<br>nanocomposites: Thermal and morphological properties. Polymer Degradation and Stability, 2014, 108,<br>158-165. | 5.8                | 60                 |
| 22 | Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres.<br>Composite Structures, 2017, 167, 20-29.                                                                         | 5.8                | 51                 |
| 23 | UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing<br>Pristine and Chemically Modified Lignin Nanoparticles. Molecules, 2021, 26, 126.                           | 3.8                | 51                 |
| 24 | PCM for improving polyurethane-based cool roof membranes durability. Solar Energy Materials and Solar Cells, 2017, 160, 34-42.                                                                                | 6.2                | 48                 |
| 25 | Recycling coffee silverskin in sustainable composites based on a poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove<br>Products, 2018, 118, 311-320.                                                                | rlock 10 Tf<br>5.2 | 50 507 Td (a<br>45 |
| 26 | Maleinized Linseed Oil as Epoxy Resin Hardener for Composites with High Bio Content Obtained from<br>Linen Byproducts. Polymers, 2019, 11, 301.                                                               | 4.5                | 45                 |
| 27 | Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Frontiers in Chemistry, 2019, 7, 157.                 | 3.6                | 38                 |
| 28 | The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 2015, 50, 863-872.                             | 3.7                | 36                 |
| 29 | Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 2018, 10, 1256.                                                            | 4.5                | 36                 |
| 30 | Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 2019, 223, 115131.                                                         | 10.2               | 35                 |
| 31 | Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 2018, 152, 162-176.    | 5.8                | 34                 |
| 32 | Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee<br>Silverskin. Molecules, 2019, 24, 3113.                                                                      | 3.8                | 34                 |
| 33 | Environmentally Friendly Polymers and Polymer Composites. Materials, 2020, 13, 4892.                                                                                                                          | 2.9                | 32                 |
| 34 | Effect of different lignocellulosic fibres on poly(Îμ-caprolactone)-based composites for potential<br>applications in orthotics. RSC Advances, 2015, 5, 23798-23809.                                          | 3.6                | 31                 |
| 35 | Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydrate Polymers, 2017, 165, 51-60.                                | 10.2               | 30                 |
| 36 | PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat<br>Flour/Poly(butylene succinate) Blends. Biomacromolecules, 2020, 21, 3254-3269.                                    | 5.4                | 25                 |

FRANCO DOMINICI

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 2176. | 4.1 | 24        |

Melt processing and mechanical property characterization of high-performance poly(ether ether) Tj ETQq000 rgBT<sub>3.1</sub> Overlock 10 Tf 50 7

| 39 | Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites.<br>Polymers, 2020, 12, 835.                                                                                           | 4.5 | 18 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 40 | Tensile Behavior of Thermoplastic Films from Wheat Flours as Function of Raw Material Baking Properties. Journal of Polymers and the Environment, 2016, 24, 37-47.                                                 | 5.0 | 16 |
| 41 | Sulfonated Fe3O4/PES nanocomposites as efficient separators in microbial fuel cells. Journal of Membrane Science, 2021, 620, 118967.                                                                               | 8.2 | 16 |
| 42 | Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells<br>(CBS)/Polycaprolactone-Based Composites. Journal of Renewable Materials, 2016, 4, 199-205.                                             | 2.2 | 15 |
| 43 | Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium<br>Terephthalate Nanocomposites. Polymers, 2020, 12, 276.                                                          | 4.5 | 15 |
| 44 | Development and Characterization of Concrete/PCM/Diatomite Composites for Thermal Energy Storage in CSP/CST Applications. Energies, 2021, 14, 4410.                                                                | 3.1 | 14 |
| 45 | Processing, thermo-mechanical characterization and gas permeability of thermoplastic<br>starch/poly(butylene trans-1,4-cyclohexanedicarboxylate) blends. Polymer Degradation and Stability,<br>2018, 157, 100-107. | 5.8 | 12 |
| 46 | Improved Toughness in Lignin/Natural Fiber Composites Plasticized with Epoxidized and Maleinized<br>Linseed Oils. Materials, 2020, 13, 600.                                                                        | 2.9 | 12 |
| 47 | Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 2021, 13, 1966.                                | 4.5 | 12 |
| 48 | Relationships between wheat flour baking properties and tensile characteristics of derived thermoplastic films. Industrial Crops and Products, 2017, 100, 138-145.                                                 | 5.2 | 11 |
| 49 | Effect of nanoâ€magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites. Polymer Composites, 2018, 39, E1742.                                                        | 4.6 | 11 |
| 50 | Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on<br>Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers, 2020, 12,<br>1451.                   | 4.5 | 11 |
| 51 | Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour<br>Behaviour of Polyester-Based Bionanocomposites. Polymers, 2020, 12, 2508.                                          | 4.5 | 9  |
| 52 | Effect of Pretreatment of Nanocomposite PESâ€Fe 3 O 4 Separator on Microbial Fuel Cells Performance.<br>Polymer Engineering and Science, 2020, 60, 371-379.                                                        | 3.1 | 7  |
| 53 | Biocomposites Based on Plasticized Wheat Flours: Effect of Bran Content on Thermomechanical<br>Behavior. Polymers, 2020, 12, 2248.                                                                                 | 4.5 | 7  |
| 54 | Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer<br>Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures.<br>Polymers, 2021, 13, 282.    | 4.5 | 7  |

FRANCO DOMINICI

| #  | Article                                                                                                                                                                                               | IF                | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 55 | Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of<br>N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017,<br>5, 423-434. | 2.2               | 6             |
| 56 | A Novel Class of Cost Effective and High Performance Composites Based on Terephthalate Salts<br>Reinforced Polyether Ether Ketone. Polymers, 2019, 11, 2097.                                          | 4.5               | 6             |
| 57 | Improving the flexibility and compostability of starch/poly(butylene cyclohexanedicarboxylate)-based blends. Carbohydrate Polymers, 2020, 246, 116631.                                                | 10.2              | 6             |
| 58 | Color Fixation Strategies on Sustainable Poly-Butylene Succinate Using Biobased Itaconic Acid.<br>Polymers, 2021, 13, 79.                                                                             | 4.5               | 4             |
| 59 | Influence of gallic acid and umbelliferone on structural and functional properties of poly(vinyl) Tj ETQq1 1 0.7845                                                                                   | 314 rgBT /<br>0.4 | Overlock 10 T |
| 60 | Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage. Energies, 2021, 14, 7151.                                                          | 3.1               | 1             |