
Sang-Eon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	38.1	610
2	Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy and Environmental Science, 2012, 5, 9419.	30.8	226
3	Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials. Catalysis Surveys From Asia, 2004, 8, 91-110.	2.6	163
4	CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides. Green Chemistry, 2011, 13, 1416.	9.0	148
5	Ceria–zirconia mixed oxides: Synthetic methods and applications. Catalysis Reviews - Science and Engineering, 2018, 60, 177-277.	12.9	142
6	Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, 2010, 276, 327-334.	6.2	137
7	Crystal morphology control of AFI type molecular sieves with microwave irradiation. Journal of Materials Chemistry, 2004, 14, 280.	6.7	107
8	CO2 as a soft oxidant for oxidative dehydrogenation reaction: An eco benign process for industry. Journal of CO2 Utilization, 2016, 16, 301-312.	6.8	105
9	Comparative Study on Partial Oxidation of Methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce–ZrO2 Catalysts. Catalysis Letters, 2002, 78, 215-222.	2.6	100
10	Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 2005, 35, 311-319.	2.8	91
11	Catalytic Efficiency of Ceria–Zirconia and Ceria–Hafnia Nanocomposite Oxides for Soot Oxidation. Catalysis Letters, 2008, 123, 327-333.	2.6	88
12	Direct synthesis of acetic acid by simultaneous co-activation of methane and CO2 over Cu-exchanged ZSM-5 catalysts. Applied Catalysis B: Environmental, 2017, 215, 50-59.	20.2	86
13	Aerobic Baeyer–Villiger Oxidation of Cyclic Ketones over Metalloporphyrins Bridged Periodic Mesoporous Organosilica. ACS Catalysis, 2011, 1, 855-863.	11.2	81
14	Effect of ceria on the structure and catalytic activity of V2O5/TiO2–ZrO2 for oxidehydrogenation of ethylbenzene to styrene utilizing CO2 as soft oxidant. Applied Catalysis B: Environmental, 2009, 91, 649-656.	20.2	79
15	Utilization of carbon dioxide as soft oxidant in the dehydrogenation of ethylbenzene over supported vanadium–antimony oxide catalysts. Green Chemistry, 2003, 5, 587-590.	9.0	77
16	Utilization of carbon dioxide as soft oxidant for oxydehydrogenation of ethylbenzene to styrene over V2O5–CeO2/TiO2–ZrO2 catalyst. Applied Catalysis B: Environmental, 2009, 87, 230-238.	20.2	70
17	Metal–organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent. Journal of Porous Materials, 2015, 22, 247-259.	2.6	69
18	CO2 utilization as an oxidant in the dehydrogenation of ethylbenzene to styrene over MnO2-ZrO2 catalysis. Catalysis Today, 2006, 115, 242-247.	4.4	60

#	Article	IF	CITATIONS
19	Novel CeO2 promoted TiO2–ZrO2 nano-oxide catalysts for oxidative dehydrogenation of p-diethylbenzene utilizing CO2 as soft oxidant. Applied Catalysis B: Environmental, 2010, 100, 472-480.	20.2	60
20	Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica. Journal of Materials Chemistry, 2010, 20, 10869.	6.7	60
21	Beneficial Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst. Chemistry Letters, 1997, 26, 1123-1124.	1.3	58
22	Dehydrogenation of Ethylbenzene to Styrene with Carbon Dioxide Over ZrO2-based Composite Oxide Catalysts. Catalysis Surveys From Asia, 2008, 12, 56-69.	2.6	50
23	Catalytic conversion of butadiene to ethylbenzene over the nanoporous nickel(ii) phosphate, VSB-1. Chemical Communications, 2001, , 859-860.	4.1	47
24	A Highly Active and Stable Catalyst for Carbon Dioxide Reforming of Methane: Ni/Ce–ZrO2/Î,-Al2O3. Catalysis Letters, 2002, 81, 147-151.	2.6	46
25	Synthesis of C4 olefins from n-butane over a novel VOx/SnO2–ZrO2 catalyst using CO2 as soft oxidant. Applied Catalysis A: General, 2012, 423-424, 168-175.	4.3	44
26	Template-Free Synthesis of the Nanoporous Nickel Phosphate VSB-5 under Microwave Irradiation. Chemistry of Materials, 2004, 16, 1394-1396.	6.7	43
27	CO2 promoted oxidative dehydrogenation of n-butane over VOx/MO2–ZrO2 (M=Ce or Ti) catalysts. Journal of CO2 Utilization, 2014, 5, 41-46.	6.8	41
28	CO2 reforming of methane over modified Ni/ZrO2 catalysts. Applied Organometallic Chemistry, 2001, 15, 109-112.	3.5	40
29	Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages. Topics in Catalysis, 2010, 53, 1457-1469.	2.8	37
30	Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica. International Journal of Biological Macromolecules, 2016, 91, 278-293.	7.5	37
31	Benzene Alkylation with 1-Dodecene over H-Mordenite Zeolite. Catalysis Letters, 2001, 76, 99-103.	2.6	35
32	PdCl ₂ immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Advances, 2016, 6, 33048-33054.	3.6	34
33	Ethylbenzene to styrene over alkali doped TiO 2 -ZrO 2 with CO 2 as soft oxidant. Applied Catalysis A: General, 2015, 495, 192-199.	4.3	32
34	High-Performance Microwave Synthesized Mesoporous TS-1 Zeolite for Catalytic Oxidation of Cyclic Olefins. Industrial & Engineering Chemistry Research, 2018, 57, 3567-3574.	3.7	32
35	Photoinduced activation of CO2 by rhenium complexes encapsulated in molecular sieves. Applied Organometallic Chemistry, 2000, 14, 826-830.	3.5	31
36	Title is missing!. Catalysis Letters, 2002, 81, 169-173.	2.6	31

#	Article	IF	CITATIONS
37	CO2 utilization for the formation of styrene from ethylbenzene over zirconia-supported iron oxide catalysts. Applied Organometallic Chemistry, 2000, 14, 815-818.	3.5	29
38	Preparation and application of nanocatalysts via surface functionalization of mesoporous materials. Research on Chemical Intermediates, 2003, 29, 921-938.	2.7	27
39	An Overview on the Dehydrogenation of Alkylbenzenes with Carbon Dioxide over Supported Vanadium–Antimony Oxide Catalysts. Catalysis Surveys From Asia, 2007, 11, 59-69.	2.6	27
40	Chiral Cu(II) Complexes as Recyclable Catalysts for Asymmetric Nitroaldol (Henry) Reaction in Ionic Liquids as Greener Reaction Media. Catalysis Letters, 2010, 140, 189-196.	2.6	27
41	Cu/SBA-15 is an Efficient Solvent-Free and Acid-Free Catalyst for the Rearrangement of Benzaldoxime into Benzamide. Catalysis Letters, 2011, 141, 1865-1871.	2.6	27
42	Carbon dioxide augmented oxidation of aromatic alcohols over mesoporous carbon nitride as a metal free catalyst. Catalysis Science and Technology, 2013, 3, 1261.	4.1	26
43	An Efficient Cr-TUD-1 Catalyst for Oxidative Dehydrogenation of Propane to Propylene with CO2 as Soft Oxidant. Catalysis Letters, 2018, 148, 576-585.	2.6	26
44	Oxidative Dehydrogenation of Ethylbenzene to Styrene with Carbon Dioxide over Fe2O3/TiO2–ZrO2 Catalyst: Influence of Chloride. Catalysis Letters, 2008, 124, 357-363.	2.6	24
45	Oxidative Dehydrogenation of Ethane with CO ₂ as a Soft Oxidant over a PtCe Bimetallic Catalyst. ACS Catalysis, 2021, 11, 9221-9232.	11.2	24
46	Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture. Journal of Hazardous Materials, 2021, 403, 123659.	12.4	23
47	Organocatalytic Application of Direct Organo-Functionalized Mesoporous Catalysts Prepared by Microwave. Topics in Catalysis, 2009, 52, 91-100.	2.8	22
48	Ti-containing mesoporous silica for methylene blue photodegradation. Applied Catalysis A: General, 2011, 393, 359-366.	4.3	22
49	High surface area TiO ₂ –ZrO ₂ prepared by caustic solution treatment, and its catalytic efficiency in the oxidehydrogenation of para-ethyltoluene by CO ₂ . Catalysis Science and Technology, 2012, 2, 514-520.	4.1	22
50	Cu(<scp>ii</scp>) PBS-bridged PMOs catalyzed one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water through click chemistry. RSC Advances, 2014, 4, 29772-29781.	3.6	22
51	Carbon dioxide assisted toluene side-chain alkylation with methanol over Cs-X zeolite catalyst. Journal of CO2 Utilization, 2018, 26, 254-261.	6.8	22
52	Ethane Dehydrogenation with CO2 as a soft oxidant over a Cr-TUD-1 catalyst. Journal of CO2 Utilization, 2020, 39, 101184.	6.8	21
53	Surfactant-Controlled and Microwave-Assisted Synthesis of Highly Active Ce x Zr1â^'x O2 Nano-Oxides for CO Oxidation. Catalysis Letters, 2008, 126, 125-133.	2.6	20
54	Epoxidation of Linear Olefins over Stacked TS-1 Zeolite Catalysts. Topics in Catalysis, 2009, 52, 169-177.	2.8	18

#	Article	IF	CITATIONS
55	Lewis-type catalytic activity of direct incorporated Zr- and Sn-SBA-16 catalysts. Research on Chemical Intermediates, 2008, 34, 507-517.	2.7	17
56	Asymmetric Catalysis in Confined Space Provided by l-Proline Functionalized Mesoporous Silica with Plugs in the Pore. Topics in Catalysis, 2010, 53, 192-199.	2.8	17
57	Asymmetric Epoxidation of α,β-Unsaturated Ketones over Heterogenized Chiral Proline Diamide Complex Catalyst in the Solvent-Free Condition. Topics in Catalysis, 2010, 53, 1381-1386.	2.8	17
58	Synthesis of porphyrin-bridged periodic mesoporous organosilica and their catalytic applications. Research on Chemical Intermediates, 2012, 38, 1237-1248.	2.7	17
59	Alkylation of benzene with 1- dodecene over usy zeolite catalyst: Effect of pretreatment and reaction conditions. Korean Journal of Chemical Engineering, 2002, 19, 607-610.	2.7	16
60	Title is missing!. Catalysis Letters, 2000, 69, 93-101.	2.6	14
61	MgO Encapsulated Mesoporous Zeolite for the Side Chain Alkylation of Toluene with Methanol. Journal of Nanoscience and Nanotechnology, 2010, 10, 227-232.	0.9	13
62	Microwave synthesis of hydrophobic Ti-TUD-1 mesoporous silica for catalytic oxidation of cycloolefins. Applied Catalysis A: General, 2014, 476, 39-44.	4.3	13
63	Chemoselective O- versus C-alkylation of substituted phenols with cyclohexene over mesoporous ZSM-5. Applied Catalysis A: General, 2014, 472, 184-190.	4.3	13
64	Photocatalytic activation of CO2 under visible light by Rhenium complex encapsulated in molecular sieves. Korean Journal of Chemical Engineering, 2001, 18, 919-923.	2.7	12
65	Oxidative Dehydrogenation of Ethylbenzene to Styrene with CO2 Over V2O5–Sb2O5–CeO2/TiO2–ZrO2 Catalysts. Topics in Catalysis, 2013, 56, 1724-1730.	2.8	12
66	Identification and Influence of Acidity on Alkylation of Phenol with Propylene over ZSM-5. Catalysis Letters, 2001, 76, 219-224.	2.6	11
67	Microwave Synthesized Mesoporous Vanadium-MFI Catalysts for Epoxidation of Styrene Using Molecular Oxygen. Topics in Catalysis, 2010, 53, 238-246.	2.8	10
68	Novelty of Dynamic Process in the Synthesis of Biocompatible Silica Nanotubes by Biomimetic Glycyldodecylamide as a Soft Template. Langmuir, 2017, 33, 10707-10714.	3.5	9
69	Styrene epoxidation over a SBA-15-supported Mn(III) Schiff-base complex. Research on Chemical Intermediates, 2008, 34, 871-880.	2.7	7
70	Microwave-assisted Knoevenagel condensation in aqueous over triazine-based microporous network. Research on Chemical Intermediates, 2014, 40, 67-75.	2.7	7
71	Aromatization of iso-butanol with CO2 as an enhancer over ZSM-5 catalysts. Research on Chemical Intermediates, 2017, 43, 7223-7239.	2.7	7
72	Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition. Research on Chemical Intermediates, 2010, 36, 677-684.	2.7	6

#	Article	IF	CITATIONS
73	Hierarchical Mg/ZSM-5 catalysts for methanol-to-propylene reaction via one-step acid treatment. Research on Chemical Intermediates, 2021, 47, 249-268.	2.7	6
74	Selective formation of styrene via oxidative dehydrogenation of 4-vinylcyclohexene over ZrO2-Supported iron oxide catalysts. Studies in Surface Science and Catalysis, 2004, 153, 347-350.	1.5	5
75	Enhancement of catalytic activity in dehydrogenation ofn-dodecane over nano-structured Pt-Sn/SBA-16 catalysts by microwave drying. Research on Chemical Intermediates, 2008, 34, 755-760.	2.7	5
76	Investigation of catalytic property in the t-butylation of 1,2-dihydroxybenzene using FT-IR and XPS study. Research on Chemical Intermediates, 2001, 27, 561-570.	2.7	2
77	Microwave synthesis of SBA-15 mesoporous silica material for beneficial effect on the hydrothermal stability. Studies in Surface Science and Catalysis, 2007, 165, 25-28.	1.5	2
78	Histidine-tagged enzyme conjugated heterogeneous magnetic mesoporous silica for high efficient biodegradation of catechol. , 2011, , .		1