
Thiago B Taketa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508476/publications.pdf Version: 2024-02-01

ΤΗΙΛΟΟ Β ΤΛΚΕΤΛ

#	Article	IF	CITATIONS
1	Removal of glyphosate herbicide from water using biopolymer membranes. Journal of Environmental Management, 2015, 151, 353-360.	3.8	104
2	Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa. Carbohydrate Polymers, 2016, 136, 1-11.	5.1	46
3	Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Applied Surface Science, 2018, 445, 478-487.	3.1	44
4	Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. Materials Science and Engineering C, 2019, 100, 493-504.	3.8	43
5	Investigation of the Internal Chemical Composition of Chitosan-Based LbL Films by Depth-Profiling X-ray Photoelectron Spectroscopy (XPS) Analysis. Langmuir, 2018, 34, 1429-1440.	1.6	35
6	Tailored chitosan/hyaluronan coatings for tumor cell adhesion: Effects of topography, charge density and surface composition. Applied Surface Science, 2019, 486, 508-518.	3.1	22
7	Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Materials Letters, 2015, 160, 359-362.	1.3	21
8	Ionic liquid functionalization of chitosan beads for improving thermal stability and copper ions uptake from aqueous solution. Journal of Environmental Chemical Engineering, 2019, 7, 103181.	3.3	19
9	Roughness dynamic in surface growth: Layer-by-layer thin films of carboxymethyl cellulose/chitosan for biomedical applications. Biointerphases, 2017, 12, 04E401.	0.6	17
10	Interplay of the Assembly Conditions on Drug Transport Mechanisms in Polyelectrolyte Multilayer Films. Langmuir, 2020, 36, 12532-12544.	1.6	17
11	Controlling antimicrobial activity and drug loading capacity of chitosan-based layer-by-layer films. International Journal of Biological Macromolecules, 2021, 172, 154-161.	3.6	17
12	Analysis of pH and salt concentration on structural and model-drug delivery properties of polysaccharide-based multilayered films. Thin Solid Films, 2019, 685, 312-320.	0.8	16
13	Chitosan Functionalization with Amino Acids Yields to Higher Copper Ions Adsorption Capacity. Journal of Polymers and the Environment, 2018, 26, 4338-4349.	2.4	15
14	Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers. Materials Science and Engineering C, 2021, 118, 111467.	3.8	15
15	Copper Ion Uptake by Chitosan in the Presence of Amyloid-β and Histidine. Applied Biochemistry and Biotechnology, 2020, 190, 949-965.	1.4	14
16	Surface modification of polyelectrolyte multilayers by high radio frequency air plasma treatment. Applied Surface Science, 2015, 329, 287-291.	3.1	11
17	Engineering the surface of prostate tumor cells and hyaluronan/chitosan multilayer films to modulate cell-substrate adhesion properties. International Journal of Biological Macromolecules, 2020, 158, 197-207.	3.6	11
18	Tracking Sulfonated Polystyrene Diffusion in a Chitosan/Carboxymethyl Cellulose Layer-by-Layer Film: Exploring the Internal Architecture of Nanocoatings. Langmuir, 2020, 36, 4985-4994.	1.6	10

Τηίασο Β Τάκετα

#	Article	IF	CITATIONS
19	Amino acid-functionalized chitosan beads for in vitro copper ions uptake in the presence of histidine. International Journal of Biological Macromolecules, 2021, 188, 421-431.	3.6	10
20	Layer-by-Layer Thin Films of Alginate/Chitosan and Hyaluronic Acid/Chitosan with Tunable Thickness and Surface Roughness. Materials Science Forum, 0, 783-786, 1226-1231.	0.3	8
21	Probing axial metal distribution on biopolymer-based layer-by-layer films for antimicrobial use. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111505.	2.5	7
22	Fast Microwave-Assisted Synthesis of Green-Fluorescent Carbon Nanodots from Sugarcane Syrup. , 2019, , .		4
23	Fundamentals and biomedical applications of biopolymer-based layer-by-layer films. , 2020, , 219-242.		3
24	Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Applications. Methods in Molecular Biology, 2021, 2197, 253-269.	0.4	3
25	Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications. Journal of Coatings Technology Research, 2022, 19, 829-838.	1.2	2