Bao-Cai Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508451/publications.pdf

Version: 2024-02-01

236925 206112 4,298 48 25 48 h-index citations g-index papers 49 49 49 3696 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 1997, 276, 1872-1874.	12.6	839
2	Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant Journal, 2003, 35, 44-56.	5.7	715
3	Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12235-12240.	7.1	574
4	The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 2008, 283, 11364-11373.	3.4	237
5	Steady-state transposon mutagenesis in inbred maize. Plant Journal, 2005, 44, 52-61.	5.7	234
6	<i>Empty Pericarp5</i> Encodes a Pentatricopeptide Repeat Protein That Is Required for Mitochondrial RNA Editing and Seed Development in Maize. Plant Cell, 2013, 25, 868-883.	6.6	161
7	Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. Plant Cell, 2010, 22, 2970-2980.	6.6	152
8	<i>Small kernelÂ1</i> encodes a pentatricopeptide repeat protein required for mitochondrial <i>nad7</i> transcript editing and seed development in maize <i>(Zea mays)</i> and rice <i>(Oryza) Tj ETQq0 O</i>	0 fg/BT/O	ve dør k 10 Tf
9	The Maize <i>DWARF1</i> Encodes a Gibberellin 3-Oxidase and Is Dual Localized to the Nucleus and Cytosol Â. Plant Physiology, 2014, 166, 2028-2039.	4.8	112
10	<scp>EMPTY PERICARP</scp> 16 is required for mitochondrial <i>nad2</i> intron 4 <i>cis</i> intron 4 <i>complex I assembly and seed development in maize. Plant Journal, 2016, 85, 507-519.</i>	5.7	97
11	<i>Empty pericarp7</i> encodes a mitochondrial Eâ€"subgroup pentatricopeptide repeat protein that is required for <i>ccm</i> <co><i>F</i>_{<i>N</i>} editing, mitochondrial function and seed development in maize. Plant Journal, 2015, 84, 283-295.</co>	5.7	89
12	<i>Emp10</i> encodes a mitochondrial <scp>PPR</scp> protein that affects the <i>cis</i> êsplicing of <i>nad2</i> intron 1 and seed development in maize. Plant Journal, 2017, 91, 132-144.	5.7	88
13	The pentatricopeptide repeat protein <scp>EMP</scp> 9 is required for mitochondrial <i>ccmB</i> and <i>rps4</i> transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist, 2017, 214, 782-795.	7.3	68
14	Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant Journal, 2001, 27, 373-382.	5.7	58
15	<i>Embryo defective 12 </i> encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. Plant Journal, 2013, 74, 792-804.	5.7	53
16	The pentatricopeptide repeat protein <scp>EMPTY PERICARP</scp> 8 is required for the splicing of three mitochondrial introns and seed development in maize. Plant Journal, 2018, 95, 919-932.	5.7	52
17	The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three <i>nad2</i> introns and seed development in maize. Journal of Experimental Botany, 2019, 70, 963-972.	4.8	50
18	The Mitochondrion-Targeted PENTATRICOPEPTIDE REPEAT78 Protein Is Required for nad5 Mature mRNA Stability and Seed Development in Maize. Molecular Plant, 2017, 10, 1321-1333.	8.3	48

#	Article	IF	CITATIONS
19	Identification of an Active New <i>Mutator</i> Transposable Element in Maize. G3: Genes, Genomes, Genetics, 2011, 1, 293-302.	1.8	46
20	<pre><scp>EMP</scp>18 functions in mitochondrial <i>atp6</i> and <i>cox2</i> transcript editing and is essential to seed development in maize. New Phytologist, 2019, 221, 896-907.</pre>	7.3	40
21	Structure and Origin of the <i>White Cap</i> Locus and Its Role in Evolution of Grain Color in Maize. Genetics, 2017, 206, 135-150.	2.9	36
22	PPR-SMR1 is required for the splicing of multiple mitochondrial introns, interacts with Zm-mCSF1, and is essential for seed development in maize. Journal of Experimental Botany, 2019, 70, 5245-5258.	4.8	36
23	Empty Pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genetics, 2019, 15, e1008305.	3.5	31
24	The Requirement of WHIRLY1 for Embryogenesis Is Dependent on Genetic Background in Maize. PLoS ONE, 2013, 8, e67369.	2.5	29
25	PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. Plant and Cell Physiology, 2020, 61, 370-380.	3.1	29
26	ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnology Journal, 2022, 20, 526-537.	8.3	27
27	Small kernel2 Encodes a Glutaminase in Vitamin B6 Biosynthesis Essential for Maize Seed Development. Plant Physiology, 2017, 174, 1127-1138.	4.8	21
28	The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. Journal of Experimental Botany, 2020, 71, 5495-5505.	4.8	20
29	<i>Embryo defective 14</i> encodes a plastidâ€targeted <scp>cGTP</scp> ase essential for embryogenesis in maize. Plant Journal, 2015, 84, 785-799.	5.7	19
30	DEK46 performs Câ€toâ€U editing of a specific site in mitochondrial <i>nad7</i> introns that is critical for intron splicing and seed development in maize. Plant Journal, 2020, 103, 1767-1782.	5.7	19
31	A Distal ABA Responsive Element in AtNCED3 Promoter Is Required for Positive Feedback Regulation of ABA Biosynthesis in Arabidopsis. PLoS ONE, 2014, 9, e87283.	2.5	19
32	PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. Frontiers in Plant Science, 2020, 11, 814.	3.6	18
33	SMALL KERNEL4Âis required for mitochondrial <i>cox1</i> transcript editing and seed development in maize. Journal of Integrative Plant Biology, 2020, 62, 777-792.	8.5	17
34	Two Pentatricopeptide Repeat Proteins Are Required for the Splicing of nad5 Introns in Maize. Frontiers in Plant Science, 2020, 11, 732.	3.6	14
35	Maize biology: From functional genomics to breeding application. Journal of Integrative Plant Biology, 2019, 61, 654-657.	8.5	13
36	The Mitochondrial Pentatricopeptide Repeat Protein PPR18 Is Required for the cis-Splicing of nad4 Intron 1 and Essential to Seed Development in Maize. International Journal of Molecular Sciences, 2020, 21, 4047.	4.1	13

#	Article	IF	CITATIONS
37	SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. Journal of Plant Physiology, 2019, 240, 152992.	3.5	11
38	Empty Pericarp24 and Empty Pericarp25 Are Required for the Splicing of Mitochondrial Introns, Complex I Assembly, and Seed Development in Maize. Frontiers in Plant Science, 2020, 11, 608550.	3.6	11
39	OsPPR939, a nad5 splicing factor, is essential for plant growth and pollen development in rice. Theoretical and Applied Genetics, 2021, 134, 923-940.	3.6	10
40	ZmPPR26, a DYW-type pentatricopeptide repeat protein, is required for C-to-U RNA editing at <i>atpA</i> -1148 in maize chloroplasts. Journal of Experimental Botany, 2021, 72, 4809-4821.	4.8	9
41	Measurement of Mitochondrial Respiration Rate in Maize (Zea mays) Leaves. Bio-protocol, 2015, 5, .	0.4	9
42	New insight in the Gibberellin biosynthesis and signal transduction. Plant Signaling and Behavior, 2015, 10, e1000140.	2.4	8
43	EMP32 is required for the <i>cis</i> -splicing of <i>nad7</i> intron 2 and seed development in maize. RNA Biology, 2021, 18, 499-509.	3.1	8
44	Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. Frontiers in Plant Science, 2021, 12, 695249.	3.6	8
45	PPR-DYW Protein EMP17 Is Required for Mitochondrial RNA Editing, Complex III Biogenesis, and Seed Development in Maize. Frontiers in Plant Science, 2021, 12, 693272.	3.6	7
46	<i>Emb15</i> encodes a plastid ribosomal assembly factor essential for embryogenesis in maize. Plant Journal, 2021, 106, 214-227.	5.7	6
47	DEK48 Is Required for RNA Editing at Multiple Mitochondrial Sites and Seed Development in Maize. International Journal of Molecular Sciences, 2022, 23, 3064.	4.1	5
48	EMP80 mediates the Câ€toâ€U editing of <i>nad7</i> and <i>atp4</i> and interacts with ZmDYW2 in maize mitochondria. New Phytologist, 2022, 234, 1237-1248.	7.3	5