List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hollow Au nanoparticles-decorated silica as near infrared-activated heat generating nano pigment. Journal of Industrial and Engineering Chemistry, 2022, 107, 376-382.	5.8	4
2	Near-infrared driven photocatalyst (Ag/BiO2-x) with post-illumination catalytic memory. Journal of Physics and Chemistry of Solids, 2022, 167, 110781.	4.0	6
3	Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosensors and Bioelectronics, 2022, 210, 114300.	10.1	23
4	Estimation of the concentration of nano-carbon black in tire-wear particles using emission factors of PM10, PM2.5, and black carbon. Chemosphere, 2022, 303, 134976.	8.2	8
5	Quantitative analysis of the concentration of nano‑carbon black originating from tire-wear particles in the road dust. Science of the Total Environment, 2022, 842, 156830.	8.0	9
6	High-efficiency photothermal sterilization on PDMS film with Au@CuS yolk-shell nanoparticles. Journal of Industrial and Engineering Chemistry, 2022, 113, 522-529.	5.8	14
7	Differentiation of carbon black from black carbon using a ternary plot based on elemental analysis. Chemosphere, 2021, 264, 128511.	8.2	19
8	Photothermal sterilization cellulose patch with hollow gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2021, 95, 120-125.	5.8	16
9	Photothermal-Mediated Catalytic Reduction of 4-Nitrophenol Using Poly(<i>N</i> -isopropylacrylamide-acrylamide) and Hollow Gold Nanoparticles. ACS Applied Polymer Materials, 2021, 3, 2768-2775.	4.4	18
10	Potential release of nano-carbon black from tire-wear particles through the weathering effect. Journal of Industrial and Engineering Chemistry, 2021, 96, 322-329.	5.8	22
11	Immobilization of visible-light-driven photocatalyst g-C3N4 on ceramic fiber for degradation of organic dye. Toxicological and Environmental Chemistry, 2021, 103, 18-36.	1.2	5
12	Development of Colorimetric Whole-Cell Biosensor for Detection of Heavy Metals in Environment for Public Health. International Journal of Environmental Research and Public Health, 2021, 18, 12721.	2.6	6
13	Optical assessment of chiral–achiral polymer blends based on surface plasmon resonance effects of gold nanoparticles. Journal Physics D: Applied Physics, 2020, 53, 095102.	2.8	4
14	Photothermal reduction of 4-nitrophenol using rod-shaped core–shell structured catalysts. Journal of Industrial and Engineering Chemistry, 2020, 86, 61-72.	5.8	11
15	Fabrication methods of dry adhesive with various shaped microsuction cups. Korean Journal of Chemical Engineering, 2020, 37, 563-570.	2.7	4
16	Long lifetime g-C3N4 photocatalyst coupled with phosphorescent material working under dark condition. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112520.	3.9	13
17	Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124957.	4.7	12
18	A green approach to the microwave-assisted synthesis of flower-like ZnO nanostructures for reduction of Cr(VI). Toxicological and Environmental Chemistry, 2019, 101, 1-12.	1.2	21

#	Article	IF	CITATIONS
19	Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. Journal of Industrial and Engineering Chemistry, 2019, 79, 473-481.	5.8	53
20	Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110341.	5.0	56
21	Hydrogen generation using Pt/Ni bimetallic nanoparticles supported on Fe3O4@SiO2@TiO2 multi-shell microspheres. Journal of Industrial and Engineering Chemistry, 2019, 79, 364-369.	5.8	25
22	Novel color filters for the correction of red–green color vision deficiency based on the localized surface plasmon resonance effect of Au nanoparticles. Nanotechnology, 2019, 30, 405706.	2.6	9
23	Photothermal performance of plasmonic patch with gold nanoparticles embedded on polymer matrix. Korean Journal of Chemical Engineering, 2019, 36, 1746-1751.	2.7	6
24	Rapid photocatalytic degradation of acetaminophen and levofloxacin using g-C ₃ N ₄ nanosheets under solar light irradiation. Materials Research Express, 2019, 6, 125538.	1.6	9
25	Nanostructured cerium-doped ZnO for photocatalytic degradation of pharmaceuticals in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112065.	3.9	58
26	Fabrication of branched-TiO2 microrods on the FTO glass for photocatalytic reduction of Cr(VI) under visible-light irradiation. Journal of Industrial and Engineering Chemistry, 2019, 73, 248-253.	5.8	17
27	Visible light active CdS@TiO2 core-shell nanostructures for the photodegradation of chlorophenols. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 75-83.	3.9	39
28	H2 generation using Pt nanoparticles encapsulated in Fe3O4@SiO2@TiO2 multishell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 48-52.	4.7	7
29	An efficient near-infrared-responsive photocatalyst of flower-like Gd3+-doped WS2. Korean Journal of Chemical Engineering, 2019, 36, 816-821.	2.7	5
30	Photothermal properties of wool fabrics colored with SiO2@AuNPs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 115-121.	4.7	14
31	Shifting of the band edge and investigation of charge carrier pathways in the CdS/g-C ₃ N ₄ heterostructure for enhanced photocatalytic degradation of levofloxacin. New Journal of Chemistry, 2019, 43, 9784-9792.	2.8	34
32	Controlled Microwave-Assisted Synthesis of the 2D-BiOCl/2D-g-C ₃ N ₄ Heterostructure for the Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination. ACS Omega, 2019, 4, 4671-4678.	3.5	56
33	Polypyrrole-coated hollow gold nanoshell exerts anti-obesity effects via photothermal lipolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 414-419.	4.7	15
34	Hazard potential of perovskite solar cell technology for potential implementation of "safe-by-design― approach. Scientific Reports, 2019, 9, 4242.	3.3	53
35	T98G Cell Death Induced by Photothermal Treatment with Hollow Gold Nanoshell-Coupled Silica Microrods Prepared from <i>Escherichia Coli</i> . ACS Applied Materials & Interfaces, 2019, 11, 8831-8837.	8.0	13
36	Evaluating the environmental impact of the lead species in perovskite solar cells via environmental-fate modeling. Journal of Industrial and Engineering Chemistry, 2019, 70, 453-461.	5.8	22

#	Article	IF	CITATIONS
37	Fabrication of electrochemical biosensor composed of multi-functional DNA structure/Au nanospike on micro-gap/PCB system for detecting troponin I in human serum. Colloids and Surfaces B: Biointerfaces, 2019, 175, 343-350.	5.0	54
38	Mesoporous alumina with high capacity for carbon monoxide adsorption. Korean Journal of Chemical Engineering, 2018, 35, 587-593.	2.7	13
39	Synthesis of gold-spikes decorated biomimetic silica microrod for photothermal agents. Journal of Industrial and Engineering Chemistry, 2018, 58, 33-37.	5.8	9
40	Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes. Korean Journal of Chemical Engineering, 2018, 35, 2283-2289.	2.7	26
41	Photothermal Cellulose-Patch with Gold-Spiked Silica Microrods Based on <i>Escherichia coli</i> . ACS Omega, 2018, 3, 5244-5251.	3.5	20
42	Preparation of nanoporous alumina using aluminum chloride via precipitation templating method for CO adsorbent. Journal of Industrial and Engineering Chemistry, 2018, 67, 132-139.	5.8	7
43	Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry. Chemosphere, 2018, 209, 815-822.	8.2	22
44	Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 2018, 457, 559-565.	6.1	68
45	Intrinsic toxicity of stable nanosized titanium dioxide using polyacrylate in human keratinocytes. Molecular and Cellular Toxicology, 2018, 14, 273-282.	1.7	4
46	Facile fabrication of superamphiphobic glass coated with fluorinated-silica nanoparticles. Materials Letters, 2018, 229, 213-216.	2.6	1
47	Comparison of subchronic immunotoxicity of four different types of aluminumâ€based nanoparticles. Journal of Applied Toxicology, 2018, 38, 575-584.	2.8	12
48	Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere, 2017, 175, 269-274.	8.2	35
49	Bimetallic Au/Ag nanoframes as spectator for Co 2+ ion. Journal of Industrial and Engineering Chemistry, 2017, 48, 235-241.	5.8	6
50	Magnetically-Separable and Thermally-Stable Au Nanoparticles Encapsulated in Mesoporous Silica for Catalytic Applications. Topics in Catalysis, 2017, 60, 763-772.	2.8	8
51	Photodegradation of organic dyes via competitive direct reduction/indirect oxidation on InSnS2 under visible light. Korean Journal of Chemical Engineering, 2017, 34, 1500-1503.	2.7	6
52	Electrochemical detection of arsenic(III) using porous gold via square wave voltammetry. Korean Journal of Chemical Engineering, 2017, 34, 2096-2098.	2.7	7
53	Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells. Toxicology in Vitro, 2017, 42, 348-357.	2.4	3
54	Spontaneous reduction of Cr(VI) using InSnS2 under dark condition. Chemical Engineering Journal, 2017, 321, 97-104.	12.7	18

Үоилснил Кім

#	Article	IF	CITATIONS
55	Tissue distribution following 28 day repeated oral administration of aluminumâ€based nanoparticles with different properties and the in vitro toxicity. Journal of Applied Toxicology, 2017, 37, 1408-1419.	2.8	9
56	Ambient fine particulate matters induce cell death and inflammatory response by influencing mitochondria function in human corneal epithelial cells. Environmental Research, 2017, 159, 595-605.	7.5	19
57	Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios. Korean Journal of Chemical Engineering, 2017, 34, 3208-3213.	2.7	3
58	Discrete-dipole approximation for the optical properties with morphological changes of silver nanoprism and nanosphere via galvanic reaction. Materials Letters, 2017, 209, 138-141.	2.6	8
59	Effect of a roughness factor on electrochemical reduction of 4-nitrophenol using porous gold. Korean Journal of Chemical Engineering, 2017, 34, 2498-2501.	2.7	6
60	Shape Measurement of Ellipsoidal Particles in a Cross-Slot Microchannel Utilizing Viscoelastic Particle Focusing. Analytical Chemistry, 2017, 89, 8662-8666.	6.5	7
61	Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles. Environmental Research, 2017, 152, 503-513.	7.5	16
62	Comparison of distribution and toxicity of different types of zincâ€based nanoparticles. Environmental Toxicology, 2017, 32, 1363-1374.	4.0	10
63	Enhancement of visible-light-driven photocatalytic reduction of aqueous Cr(VI) with flower-like In3+-doped SnS2. Journal of Industrial and Engineering Chemistry, 2017, 45, 206-214.	5.8	44
64	JAK/STAT and TGF-ß activation as potential adverse outcome pathway of TiO2NPs phototoxicity in Caenorhabditis elegans. Scientific Reports, 2017, 7, 17833.	3.3	21
65	Distribution and immunotoxicity by intravenous injection of iron nanoparticles in a murine model. Journal of Applied Toxicology, 2016, 36, 414-423.	2.8	14
66	Biodistribution and toxicity of spherical aluminum oxide nanoparticles. Journal of Applied Toxicology, 2016, 36, 424-433.	2.8	42
67	Electrochemical degradation of organic dyes with a porous gold electrode. Korean Journal of Chemical Engineering, 2016, 33, 1855-1859.	2.7	19
68	Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius. Science of the Total Environment, 2016, 553, 565-573.	8.0	35
69	A higher aspect ratio enhanced bioaccumulation and altered immune responses due to intravenously-injected aluminum oxide nanoparticles. Journal of Immunotoxicology, 2016, 13, 439-448.	1.7	13
70	Feasibility study on the extraction of TiO 2 nanoparticle exposed in the activated sludge using alkaline digestion. Journal of Industrial and Engineering Chemistry, 2016, 41, 62-67.	5.8	11
71	Superhydrophilic–underwater superoleophobic TiO2-coated mesh for separation of oil from oily seawater/wastewater. Korean Journal of Chemical Engineering, 2016, 33, 3203-3206.	2.7	23
72	Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology, 2016, 10, 1188-1202.	3.0	16

#	Article	IF	CITATIONS
73	Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge. Journal of Industrial and Engineering Chemistry, 2016, 40, 47-53.	5.8	50
74	Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation. Environmental Research, 2016, 148, 184-195.	7.5	9
75	Disturbance of ion environment and immune regulation following biodistribution of magnetic iron oxide nanoparticles injected intravenously. Toxicology Letters, 2016, 243, 67-77.	0.8	9
76	Electrochemical sensor applications of Pt supported porous gold electrode prepared using cellulose-filter. Korean Journal of Chemical Engineering, 2016, 33, 344-349.	2.7	7
77	Photo-corrosion inhibition of Ag ₃ PO ₄ by polyaniline coating. Desalination and Water Treatment, 2016, 57, 13394-13403.	1.0	2
78	Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, <i>Chironomus riparius</i> . Environmental Toxicology and Chemistry, 2015, 34, 2023-2032.	4.3	27
79	Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Archives of Toxicology, 2015, 89, 1771-1782.	4.2	24
80	Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environmental Research, 2015, 143, 138-147.	7.5	49
81	Synthesis of Au/Ag nanoframes from Ag nanoplates by galvanic replacement reaction and its optical properties. Materials Letters, 2015, 145, 154-157.	2.6	10
82	Fabrication of gold nanowires (GNW) using aluminum anodic oxide (AAO) as a metal-ion sensor. Korean Journal of Chemical Engineering, 2015, 32, 299-302.	2.7	8
83	Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism. RSC Advances, 2015, 5, 9618-9620.	3.6	23
84	Microwave-assisted synthesis of Au/CdS nanorods for a visible-light responsive photocatalyst. RSC Advances, 2015, 5, 52737-52742.	3.6	22
85	Colorimetric detection of heavy metal ions using aminosilane. Journal of Industrial and Engineering Chemistry, 2015, 31, 393-396.	5.8	25
86	Facile microwave-assisted synthesis of SnS2 nanoparticles for visible-light responsive photocatalyst. Journal of Industrial and Engineering Chemistry, 2015, 31, 269-275.	5.8	63
87	Au nanoparticle-embedded SiO ₂ –Au@SiO ₂ catalysts with improved catalytic activity, enhanced stability to metal sintering and excellent recyclability. RSC Advances, 2015, 5, 55608-55618.	3.6	24
88	Functionalized magnetic core–shell Fe@SiO2 nanoparticles as recoverable colorimetric sensor for Co2+ ion. Chemical Engineering Journal, 2015, 281, 428-433.	12.7	26
89	Paper-based synthesis of Pd-dendrite supported porous gold. Materials Letters, 2015, 154, 60-63.	2.6	8
90	Effect of ionic-strength adjusters on the detection of silver ion using ion-selective electrode. Korean Journal of Chemical Engineering, 2015, 32, 1924-1927.	2.7	0

Үоилснил Кім

#	Article	IF	CITATIONS
91	Biosorptive removal of bare-, citrate-, and PVP-coated silver nanoparticles from aqueous solution by activated sludge. Journal of Industrial and Engineering Chemistry, 2015, 25, 51-55.	5.8	20
92	Synthesis of paper-based porous gold electrode for electrocatalytic oxidation of ethanol. Journal of Industrial and Engineering Chemistry, 2015, 26, 95-99.	5.8	7
93	A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Archives of Toxicology, 2015, 89, 371-379.	4.2	49
94	Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. Rheologica Acta, 2014, 53, 927-933.	2.4	42
95	Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells. Toxicology Letters, 2014, 229, 167-177.	0.8	28
96	Sensitivity of nanoparticles' stability at the point of zero charge (PZC). Journal of Industrial and Engineering Chemistry, 2014, 20, 3175-3178.	5.8	32
97	Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Toxicology Letters, 2014, 225, 422-432.	0.8	45
98	Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells. Archives of Toxicology, 2014, 88, 1607-1618.	4.2	53
99	ERK pathway is activated in bare-FeNPs-induced autophagy. Archives of Toxicology, 2014, 88, 323-336.	4.2	56
100	Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicology and Environmental Safety, 2014, 104, 9-17.	6.0	58
101	A simple hydrothermal route for the preparation of HgS nanoparticles and their photocatalytic activities. RSC Advances, 2014, 4, 15371-15376.	3.6	27
102	Sheet-type titania, but not P25, induced paraptosis accompanying apoptosis in murine alveolar macrophage cells. Toxicology Letters, 2014, 230, 69-79.	0.8	13
103	Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicology in Vitro, 2014, 28, 1402-1412.	2.4	89
104	Coprecipitates Synthesis of Caln ₂ O ₄ and Its Photocatalytic Degradation of Methylene Blue by Visible Light Irradiation. Industrial & Engineering Chemistry Research, 2014, 53, 11720-11726.	3.7	17
105	Regeneration of aged-AgNPs via density gradient ultracentrifugal nanoseparation. Journal of Industrial and Engineering Chemistry, 2014, 20, 3157-3162.	5.8	3
106	Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology, 2014, 8, 349-362.	3.0	63
107	Assessment of Removal of Silver Nanoparticle in Sewage Treatment Plant Waste Using Process Simulation. Clean Technology, 2014, 20, 160-165.	0.1	0
108	Dispersion stability of citrate- and PVP-AgNPs in biological media for cytotoxicity test. Korean Journal of Chemical Engineering, 2013, 30, 671-674.	2.7	24

#	Article	IF	CITATIONS
109	Functional Analysis of TiO2 Nanoparticle Toxicity in Three Plant Species. Biological Trace Element Research, 2013, 155, 93-103.	3.5	128
110	Physicochemical properties between pristine and aged AgNPs for the evaluation of nanotoxicity. Korean Journal of Chemical Engineering, 2013, 30, 1321-1325.	2.7	1
111	Effect of agglomeration of silver nanoparticle on nanotoxicity depression. Korean Journal of Chemical Engineering, 2013, 30, 364-368.	2.7	23
112	Surface plasmon resonance study of (positive, neutral, negative) vesicles rupture by AgNPs' attack for screening of cytotoxicity induced by nanoparticles. Korean Journal of Chemical Engineering, 2013, 30, 482-487.	2.7	4
113	Co3O4 nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	16
114	Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicology and Applied Pharmacology, 2013, 270, 106-113.	2.8	36
115	Spectroscopic and microscopic studies of vesicle rupture by AgNPs attack to screen the cytotoxicity of nanomaterials. Journal of Industrial and Engineering Chemistry, 2013, 19, 1944-1948.	5.8	2
116	Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere, 2013, 92, 524-528.	8.2	83
117	Colorimetric detection of vesicle rupture by attack of Ag nanoparticles. Korean Journal of Chemical Engineering, 2013, 30, 235-237.	2.7	2
118	Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 2013, 93, 60-67.	6.0	286
119	Colorimetric Detection of Co ²⁺ Ion Using Silver Nanoparticles with Spherical, Plate, and Rod Shapes. Langmuir, 2013, 29, 8978-8982.	3.5	106
120	A brain-coral-inspired metal–carbon hybrid synthesized using agarose gel for ultra-fast charge and discharge supercapacitor electrodes. Chemical Communications, 2013, 49, 1554.	4.1	22
121	Cell Stretching Measurement Utilizing Viscoelastic Particle Focusing. Analytical Chemistry, 2012, 84, 10471-10477.	6.5	97
122	Repression of photomediated morphological changes of silver nanoplates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 449-453.	4.7	16
123	Waste coffee-grounds as potential biosorbents for removal of acid dye 44 from aqueous solution. Korean Journal of Chemical Engineering, 2012, 29, 903-907.	2.7	24
124	In situ detection and removal of metal ion by porous gold electrode. Microporous and Mesoporous Materials, 2012, 147, 1-4.	4.4	10
125	Fabrication and Characterization of Macroporous Gold Hybrid Sensing Electrodes With Electroplated Platinum Nanoparticles. IEEE Nanotechnology Magazine, 2011, 10, 1298-1305.	2.0	8
126	A Single Instillation of Amorphous Silica Nanoparticles Induced Inflammatory Responses and Tissue Damage until Day 28 after Exposure. Journal of Health Science, 2011, 57, 60-71.	0.9	18

Үоимсним Кім

#	Article	IF	CITATIONS
127	Efficiency of protective dermal equipment against silver nanoparticles with water aerosol. Journal of Nanoparticle Research, 2011, 13, 3043-3049.	1.9	15
128	Amperometric sensing of hydrogen peroxide via highly roughened macroporous Gold-/Platinum nanoparticles electrode. Current Applied Physics, 2011, 11, 211-216.	2.4	46
129	Formation of abnormally large-sized tubular amyloid β aggregates on a nanostructured gold surface. Korean Journal of Chemical Engineering, 2011, 28, 184-188.	2.7	0
130	Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3. Korean Journal of Chemical Engineering, 2011, 28, 267-271.	2.7	29
131	Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain. Toxicological and Environmental Chemistry, 2011, 93, 120-133.	1.2	35
132	Propectives of Environmental Colorimetric-Sensors. Korean Chemical Engineering Research, 2011, 49, 393-399.	0.2	3
133	10.2478/s11814-009-0314-4. , 2011, 27, 324.		0
134	10.2478/s11814-009-0238-z., 2011, 26, 1630.		2
135	Induction of Inflammatory Responses in Mice Treated with Cerium Oxide Nanoparticles by Intratracheal Instillation. Journal of Health Science, 2010, 56, 387-396.	0.9	31
136	Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology, 2010, 275, 65-71.	4.2	124
137	Dependence of approaching velocity on the force-distance curve in AFM analysis. Korean Journal of Chemical Engineering, 2010, 27, 324-327.	2.7	6
138	CO oxidation from syngas (CO and H2) using nanoporous Pt/Al2O3 catalyst. Korean Journal of Chemical Engineering, 2010, 27, 1458-1461.	2.7	4
139	Fast preparation of citrate-stabilized silver nanoplates and its nanotoxicity. Korean Journal of Chemical Engineering, 2010, 27, 1897-1900.	2.7	4
140	Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environmental Toxicology and Chemistry, 2010, 29, 2154-2160.	4.3	113
141	Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation. Biosensors and Bioelectronics, 2010, 26, 314-320.	10.1	65
142	Induction of Inflammatory Responses by Carbon Fullerene (C60) in Cultured RAW264.7 Cells and in Intraperitoneally Injected Mice. Toxicological Research, 2010, 26, 267-273.	2.1	10
143	Rapid, Reversible Preparation of Size-Controllable Silver Nanoplates by Chemical Redox. Langmuir, 2010, 26, 11621-11623.	3.5	39
144	Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology, 2010, 30, 162-168.	4.0	470

#	Article	IF	CITATIONS
145	Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 2010, 24, 872-878.	2.4	645
146	Effect of the preparation conditions of carbon-supported Pt catalyst on PEMFC performance. Journal of Applied Electrochemistry, 2009, 39, 135-140.	2.9	21
147	Characterization of exposure to silver nanoparticles in a manufacturing facility. Journal of Nanoparticle Research, 2009, 11, 1705-1712.	1.9	73
148	Preparation of CuO-CeO2-Al2O3 catalyst with mesopore structure for water gas shift reaction. Korean Journal of Chemical Engineering, 2009, 26, 32-35.	2.7	10
149	Applications of silver nanoplates as colorimetric indicators of pH-induced conformational changes in cytochrome c. Korean Journal of Chemical Engineering, 2009, 26, 258-260.	2.7	6
150	Effect of laser beam focusing point on AFM measurements. Korean Journal of Chemical Engineering, 2009, 26, 496-499.	2.7	2
151	Exposure assessment of engineered nanomaterials in the workplace. Korean Journal of Chemical Engineering, 2009, 26, 1630-1636.	2.7	7
152	Preparation of coral-like porous gold for metal ion detection. Microporous and Mesoporous Materials, 2009, 122, 283-287.	4.4	32
153	3D CFD analysis of the hydrogen releases and dispersion around storage facilities. Korean Journal of Chemical Engineering, 2008, 25, 217-222.	2.7	8
154	In-situ observation of deposition of gold nanoparticles on the amine-functionalized surface by open liquid-AFM. Korean Journal of Chemical Engineering, 2008, 25, 383-385.	2.7	5
155	Preparation of Pt-Co catalysts on mesoporous carbon and effect of alloying on catalytic activity in oxygen electro-reduction. Korean Journal of Chemical Engineering, 2008, 25, 431-436.	2.7	16
156	Methanol-tolerant PdPt/C alloy catalyst for oxygen electro-reduction reaction. Korean Journal of Chemical Engineering, 2008, 25, 770-774.	2.7	28
157	Fabrication of island-type microelectrode via AFM lithography for a highly sensitive Pt-ion detection system. Sensors and Actuators B: Chemical, 2008, 129, 734-740.	7.8	4
158	Electronic Punch on the Thiolated-Au Films by Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2008, 8, 5090-5093.	0.9	0
159	Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon. Sensors, 2008, 8, 6154-6164.	3.8	46
160	Application of Mg-Mesoporous Alumina Prepared by Using Magnesium Stearate as a Template for the Removal of Nickel:  Kinetics, Isotherm, and Error Analysis. Industrial & Engineering Chemistry Research, 2007, 46, 2834-2842.	3.7	32
161	Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Applied Catalysis B: Environmental, 2007, 77, 157-165.	20.2	188
162	Preparation of nickel-mesoporous materials and their application to the hydrodechlorination of chlorinated organic compounds. Catalysis Surveys From Asia, 2007, 11, 49-58.	2.6	11

#	Article	IF	CITATIONS
163	Effect of framework or textural nanoporosity on the bulk morphology of mesoporous aluminas. Korean Journal of Chemical Engineering, 2007, 24, 679-682.	2.7	8
164	Fabrication of Organosilane-Modified Electrodes for Metal Ion Detection at the Molecular Level. Langmuir, 2006, 22, 9805-9808.	3.5	5
165	Enhancement of Topographic Images Obtained in Liquid Media by Atomic Force Microscopy. Journal of Physical Chemistry B, 2006, 110, 20526-20532.	2.6	15
166	Phase Separation of a Mixed Self-Assembled Monolayer Prepared via a Stepwise Method. Langmuir, 2006, 22, 4885-4889.	3.5	41
167	In situ observation of biomolecules patterned on a PEG-modified Si surface by scanning probe lithography. Biomaterials, 2006, 27, 4655-4660.	11.4	42
168	Synthesis oftrans-substituted porphyrin building blocks containing two S-trityl or thiol groups. Korean Journal of Chemical Engineering, 2006, 23, 512-515.	2.7	6
169	Fast heating stage for open liquid-cell atomic force microscopy. Review of Scientific Instruments, 2006, 77, 036114.	1.3	4
170	Multifunctionalization of organosilanes on submicron-sized island-type electrodes for the selective detection of metal ions. Applied Physics Letters, 2006, 88, 013113.	3.3	8
171	Dependence of image distortion in a liquid-cell atomic force microscope on fluidic properties. Applied Physics Letters, 2006, 88, 173121.	3.3	9
172	An array of Au nanoparticles on the nanopatterned Si(100). Microelectronic Engineering, 2005, 81, 389-393.	2.4	8
173	Comparison of mesoporous aluminas synthesized using stearic acid and its salts. Korean Journal of Chemical Engineering, 2005, 22, 321-327.	2.7	16
174	Fabrication of submicron-sized copper structures on pre-patterned self-assembled monolayer and Langmuir-Blodgett films. Korean Journal of Chemical Engineering, 2005, 22, 635-638.	2.7	5
175	Fabrication of submicron size electrode via nonetching method for metal ion detection. Applied Physics Letters, 2005, 86, 073113.	3.3	14
176	In situ Negative Patterning ofp-Silicon via Scanning Probe Lithography in HF/EtOH Liquid Bridges. Journal of the American Chemical Society, 2005, 127, 9380-9381.	13.7	21
177	Effect of Framework and Textural Porosities of Functionalized Mesoporous Silica on Metal Ion Adsorption Capacities. Separation Science and Technology, 2005, 39, 1427-1442.	2.5	21
178	Synthesis of tailored porous alumina with a bimodal pore size distribution. Materials Research Bulletin, 2004, 39, 2103-2112.	5.2	47
179	Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean Journal of Chemical Engineering, 2004, 21, 187-194.	2.7	89
180	Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method. Environmental Science & Technology, 2004, 38, 924-931.	10.0	579

YOUNGHUN KIM

#	Article	IF	CITATIONS
181	Title is missing!. Catalysis Letters, 2003, 89, 185-192.	2.6	58
182	Synthesis of mesoporous alumina by using a cost-effective template. Korean Journal of Chemical Engineering, 2003, 20, 1142-1144.	2.7	18
183	Preparation of Functionalized Mesostructured Silica Containing Magnetite (MSM) for the Removal of Copper Ions in Aqueous Solutions and Its Magnetic Separation. Separation Science and Technology, 2003, 38, 2533-2548.	2.5	52
184	A novel method for synthesis of a Ni/Al2O3 catalyst with a mesoporous structure using stearic acid salts. Journal of Materials Chemistry, 2003, 13, 2353.	6.7	42
185	POROUS ALUMINA WITH BIMODAL PORE SIZE DISTRIBUTION AS AN ORGANIC ADSORBENT. , 2003, , .		1
186	Synthesis of mesoporous Î ³ -alumina through pre- and post-hydrolysis methods. Korean Journal of Chemical Engineering, 2002, 19, 908-910.	2.7	28
187	Preparation of Mesoporous Catalyst Supported on Silica with Finely Dispersed Ni Particles. Catalysis Letters, 2002, 81, 89-96.	2.6	76
188	Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. Microporous and Mesoporous Materials, 2001, 50, 77-90.	4.4	274
189	Hydrothermal synthesis of SnS2 nanocrystals for photocatalytic degradation of 2,4,6-trichlorophenol under white LED light irradiation. , 0, 92, 108-115.		10
190	Thermal oxidation etching process of g-C3N4 nanosheets from their bulk materials and its photocatalytic activity under solar light irradiation. , 0, 116, 267-276.		12