Tugrul Oktay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508068/publications.pdf

Version: 2024-02-01

53 papers	540 citations	12 h-index	794594 19 g-index
53	53	53	237 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Modeling and control of a helicopter slung-load system. Aerospace Science and Technology, 2013, 29, 206-222.	4.8	47
2	Simultaneous quadrotor autopilot system and collective morphing system design. Aircraft Engineering and Aerospace Technology, 2020, 92, 1093-1100.	1.2	47
3	Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology, 2013, 85, 32-47.	0.8	31
4	Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1511-1525.	1.6	27
5	Simultaneous Helicopter and Control-System Design. Journal of Aircraft, 2013, 50, 911-925.	2.4	26
6	Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 2016, 88, 818-834.	1.2	26
7	Simultaneous Longitudinal and Lateral Flight Control Systems Design for Both Passive and Active Morphing TUAVs. Elektronika Ir Elektrotechnika, 2017, 23, .	0.8	25
8	Comfortable helicopter flight via passive/active morphing. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 2876-2886.	4.7	20
9	Neural network based redesign of morphing UAV for simultaneous improvement of roll stability and maximum lift/drag ratio. Aircraft Engineering and Aerospace Technology, 2018, 90, 1203-1212.	1.2	19
10	Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2018, 232, 857-868.	1.0	18
11	Flight Control Energy Saving via Helicopter Rotor Active Morphing. Journal of Aircraft, 2014, 51, 1784-1804.	2.4	15
12	Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircraft Engineering and Aerospace Technology, 2022, 94, 1228-1241.	1.2	15
13	Quadrotorlarda Diferansiyel Morphingin İleri Uçuşa Etkisinin PID Algoritması Kullanılarak İncelenmesi. Journal of Aviation, 2020, 4, 15-21.	0.5	14
14	Variance-constrained control of maneuvering helicopters with sensor failure. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227, 1845-1858.	1.3	12
15	Performance of minimum energy controllers on tiltrotor aircraft. Aircraft Engineering and Aerospace Technology, 2014, 86, 361-374.	0.8	11
16	Farkli Uçuş Durumlari Için Quadcopter Dinamik Modeli ve Simulasyonu. European Journal of Science and Technology, 0, , 132-142.	0.5	10
17	Redesign of Morphing UAV for Simultaneous Improvement of Directional Stability and Maximum Lift/Drag Ratio. Advances in Electrical and Computer Engineering, 2018, 18, 57-62.	0.9	10
18	Quadrotorlarda Yaw Hareketi için Eşzamanlı Olmayan Başkalaşım Tasarımı. Journal of Aviation, 201 81-88.	9 _{0.5}	9

#	Article	IF	Citations
19	Helicopter Control Energy Reduction Using Moving Horizontal Tail. Scientific World Journal, The, 2015, 2015, 1-10.	2.1	8
20	A simulation-based method using artificial neural networks for solving the inverse kinematic problem of articulated robots. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231, 470-479.	2.5	8
21	Integrated Maneuvering Helicopter Model and Controller Design. , 2012, , .		7
22	Effect of the Simultaneous Variation in Blade Root Chord Length and Blade Taper on Helicopter Flight Control Effort. International Journal of Aerospace Engineering, 2017, 2017, 1-8.	0.9	7
23	Improvement of the thrust-torque ratio of an unmanned helicopter by using the ABC algorithm. Aircraft Engineering and Aerospace Technology, 2020, 92, 1133-1139.	1.2	7
24	En uygun gövde sýrükleme katsayısı hesabı için yeni bir öğrenme algoritması. Sakarya University of Science, 2017, 21, 63-63.	lournal	7
25	Lateral Autonomous Performance Maximization of Tactical Unmanned Aerial Vehicles by Integrated Passive and Active Morphing. International Journal of Advanced Research in Engineering, 2017, 3, 1.	0.2	7
26	PID BASED HIERARCHICAL AUTONOMOUS SYSTEM PERFORMANCE MAXIMIZATION OF A HYBRID UNMANNED AERIAL VEHICLE (HUAV). Anadolu University Journal of Sciences & Technology, 2017, 18, 1-1.	0.2	7
27	Simultaneous Design of a Small UAV (Unmanned Aerial Vehicle) Flight Control System and Lateral State Space Model. Journal of Aviation, 0, , .	0.5	7
28	Quadrotor Flight System Design using Collective and Differential Morphing with SPSA and ANN. International Journal of Intelligent Systems and Applications in Engineering, 2021, 9, 159-164.	1.5	7
29	Combined Quadrotor Autopilot System and Differential Morphing System Design. Journal of Aviation, 0, , .	0.5	7
30	Model Predictive Control of Maneuvering Helicopters. , 2012, , .		6
31	Dört Rotorlu İHA Pervanesinde Uçuş Hızı ve Dönme Hızının İtme Katsayısı Üzerine Etkiler Araştırılması. Journal of Aviation, 2021, 5, 9-15.	inin SayÄ: 0.5	±şal 6
32	Quadrotorlarda PID Algoritması Kullanarak Diferansiyel Morphingin Yanlamasına Uçuş Üzerine Etkisinin İncelenmesi. European Journal of Science and Technology, 0, , 636-644.	0.5	6
33	Unmanned Aerial Vehicles (UAVs) According to Engine Type. Journal of Aviation, 0, , .	0.5	6
34	Output variance constrained bending control of rotating Euler–Bernoulli beam. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231, 202-211.	2.5	5
35	Maximum lift/drag ratio improvement of TUAVs via small aerodynamic modifications. Aircraft Engineering and Aerospace Technology, 2018, 90, 1438-1444.	1.2	5
36	Combined active flow and flight control systems design for morphing unmanned aerial vehicles. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5393-5402.	1.3	5

#	Article	IF	Citations
37	Hexarotor Longitudinal Flight Control with Deep Neural Network, PID Algorithm and Morphing. European Journal of Science and Technology, 0, , .	0.5	5
38	Başlangıç y plus Değerinin Etkileri: γ-Reθ SST Týrbülans Modeli Kullanılarak 3D NACA 4412 Kanadın Analizi. European Journal of Science and Technology, 0, , 692-702.	ın SayÄ:	±sal
39	Designing, Dynamic Modeling and Simulation of ISTECOPTER. Journal of Aviation, 0, , .	0.5	5
40	Robustness of variance constrained controllers for complex, control oriented helicopter models., $2013, \dots$		4
41	Legal and Ethical Issues of Unmanned Aerial Vehicles. Journal of Aviation, 0, , .	0.5	4
42	Quadrotorlarda Diferansiyel ve Kollektif Morphing ile Yanal Kontrol. Journal of Aviation, 2020, 4, 48-54.	0.5	4
43	Combined outputs variance constrained and input variance constrained design for flight control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2196-2204.	1.3	3
44	Constrained control of helicopter vibration to reduce motion blur. Aircraft Engineering and Aerospace Technology, 2018, 90, 1326-1336.	1.2	2
45	Döner Kanatlı İnsansız Hava Aracının Sistem Tasarımı ve Kontrolü. European Journal of Science a Technology, 0, , .	nd 0.5	2
46	Anfis Based Thrust Estimation of a Small Rotary Wing Drone. European Journal of Science and Technology, 0, , 738-742.	0.5	2
47	NACA 4412 Kanadı Üzerinde Bir Emme Kanalı Tasarlanmasının Aerodinamik Etkileri. European Journal of Science and Technology, 0, , 1001-1007.	0.5	2
48	Başkalaşan Kanat Ucu Tasarımı ve Avantajları. European Journal of Science and Technology, 0, , 606-610.	0.5	1
49	Stability Evaluation of a Fixed-Wing Unmanned Aerial Vehicle with Morphing Wingtip. Journal of Aviation, 2022, 6, 103-109.	0.5	1
50	Energy Saving via Integrated Passive and Active Morphing During Maneuvers. , 2016, , 297-312.		0
51	HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 0, , 335-349.	0.5	O
52	Autonomous flight performance improvement of the morphing aerial robot by aerodynamic shape redesign. Sakarya University Journal of Science, 0 , 1 - 1 .	0.7	0
53	Özgün Trikopterin Özellikleri ve Diğer İnsansız Hava Araçları ile Karşılaştırılması. European Science and Technology, 0, , 816-825.	l Journal of 0.5	f _o