
David H Sliney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety of UVA-Riboflavin Cross-Linking of the Cornea. Cornea, 2007, 26, 385-389.	1.7	712
2	Retinal sensitivity to damage from short wavelength light. Nature, 1976, 260, 153-155.	27.8	649
3	Safety with Lasers and Other Optical Sources. , 1980, , .		470
4	Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of Applied Physiology, 2011, 110, 619-626.	2.5	241
5	Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light. Journal of Biological Rhythms, 2008, 23, 379-386.	2.6	211
6	Evaluation of Optical Radiation Hazards. Applied Optics, 1973, 12, 1.	2.1	175
7	How Light Reaches the Eye and Its Components. International Journal of Toxicology, 2002, 21, 501-509.	1.2	152
8	WHAT IS THE MEANING OF THRESHOLD IN LASER INJURY EXPERIMENTS? IMPLICATIONS FOR HUMAN EXPOSURE LIMITS. Health Physics, 2002, 82, 335-347.	0.5	120
9	Eye Protective Techniques for Bright Light. Ophthalmology, 1983, 90, 937-944.	5.2	113
10	UV Doses of Americans¶. Photochemistry and Photobiology, 2001, 73, 621.	2.5	111
11	Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Applied Optics, 2005, 44, 2162.	2.1	108
12	Photoprotection of the eye – UV radiation and sunglasses. Journal of Photochemistry and Photobiology B: Biology, 2001, 64, 166-175.	3.8	103
13	White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model. Environmental Health Perspectives, 2014, 122, 269-276.	6.0	103
14	Radiometric Quantities and Units Used in Photobiology and Photochemistry: Recommendations of the Commission Internationale de l'Eclairage (International Commission on Illumination). Photochemistry and Photobiology, 2007, 83, 425-432.	2.5	101
15	Laser safety. Lasers in Surgery and Medicine, 1995, 16, 215-225.	2.1	78
16	Exposure Geometry and Spectral Environment Determine Photobiological Effects on the Human Eye¶ â€. Photochemistry and Photobiology, 2005, 81, 483.	2.5	62
17	UV radiation ocular exposure dosimetry. Journal of Photochemistry and Photobiology B: Biology, 1995, 31, 69-77.	3.8	60
18	The Merits of an Envelope Action Spectrum for Ultraviolet Radiation Exposure Criteria. AIHA Journal, 1972, 33, 644-653.	0.4	58

#	Article	IF	CITATIONS
19	Estimating the solar ultraviolet radiation exposure to an intraocular lens implant. Journal of Cataract and Refractive Surgery, 1987, 13, 296-301.	1.5	48
20	UV radiation ocular exposure dosimetry. Documenta Ophthalmologica, 1995, 88, 243-254.	2.2	48
21	UV-B Exposure to the Eye Depending on Solar Altitude. Eye and Contact Lens, 2011, 37, 191-195.	1.6	47
22	REVIEW OF THRESHOLDS AND RECOMMENDATIONS FOR REVISED EXPOSURE LIMITS FOR LASER AND OPTICAL RADIATION FOR THERMALLY INDUCED RETINAL INJURY. Health Physics, 2011, 100, 210-220.	0.5	46
23	Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. International Journal of Ophthalmology, 2017, 10, 191-202.	1.1	43
24	Safety standards and measurement techniques for high intensity light sources. Vision Research, 1980, 20, 1133-1141.	1.4	41
25	Retinal Image Motion During Deliberate Fixation. Health Physics, 2000, 78, 131-142.	0.5	41
26	A Need to Revise Human Exposure Limits for Ultraviolet UV Radiation ^{â€} . Photochemistry and Photobiology, 2021, 97, 485-492.	2.5	41
27	Far UV-C radiation: An emerging tool for pandemic control. Critical Reviews in Environmental Science and Technology, 2023, 53, 733-753.	12.8	41
28	Quantifying retinal irradiance levels in light damage experiments. Current Eye Research, 1984, 3, 175-180.	1.5	35
29	RE-EVALUATION OF THE ULTRAVIOLET HAZARD ACTION SPECTRUM???THE IMPACT OF SPECTRAL BANDWIDTH. Health Physics, 2005, 89, 322-332.	0.5	34
30	Laser-Induced Photic Injury Phenocopies Macular Dystrophy. Ophthalmic Genetics, 2016, 37, 59-67.	1.2	30
31	Balancing the Risk of Eye Irritation from <scp>UV</scp> with Infection from Bioaerosols. Photochemistry and Photobiology, 2013, 89, 770-776.	2.5	29
32	Safety concerns about laser pointers. Journal of Laser Applications, 1994, 6, 159-164.	1.7	27
33	Is a differentiated advice by season and region necessary?. Progress in Biophysics and Molecular Biology, 2006, 92, 150-160.	2.9	27
34	Upperâ€Room Ultraviolet Germicidal Irradiation (UVGI) for Air Disinfection: A Symposium in Print. Photochemistry and Photobiology, 2013, 89, 764-769.	2.5	27
35	PHOTOKERATITIS FROM 193 nm ARGONâ€FLUORIDE LASER RADIATION. Photochemistry and Photobiology, 1991, 53, 739-744.	2.5	25
36	Geometrical Gradients in the Distribution of Temperature and Absorbed Ultraviolet Radiation in Ocular Tissues. , 2002, 35, 40-59.		24

#	Article	IF	CITATIONS
37	Potential Laser Hazards to the Clinician During Photocoagulation. American Journal of Ophthalmology, 1987, 103, 758-760.	3.3	23
38	Ocular Exposure to Environmental Light and Ultraviolet � The Impact of Lid Opening and Sky Conditions1. Developments in Ophthalmology, 1997, 27, 63-75.	0.1	22
39	Intraocular and Crystalline Lens Protection From Ultraviolet Damage. Eye and Contact Lens, 2011, 37, 250-258.	1.6	22
40	Photokeratitis From Subablative 193-Nanometer Excimer Laser Radiation. Journal of Refractive Surgery, 1992, 8, 274-279.	2.3	22
41	OCULAR INJURY DUE TO LIGHT TOXICITY. International Ophthalmology Clinics, 1988, 28, 246-250.	0.7	21
42	Laser eye injuries in military occupations. Aviation, Space, and Environmental Medicine, 2003, 74, 947-52.	0.5	20
43	Laser reflections from surgical instruments. Lasers in Surgery and Medicine, 1992, 12, 675-678.	2.1	19
44	UV-Photokeratitis Associated with Germicidal Lamps Purchased during the COVID-19 Pandemic. Ocular Immunology and Inflammation, 2021, 29, 76-80.	1.8	19
45	Photobiological Risk Classification of Lamps and Lamp Systems—History and Rationale. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 213-234.	2.9	18
46	The Evaluation of Laser Hazards. AIHA Journal, 1968, 29, 425-431.	0.4	17
47	Semitransparent curtains for control of optical radiation hazards. Applied Optics, 1981, 20, 2352.	2.1	17
48	Endoexcimer Laser Intraocular Ablative Photodecomposition. American Journal of Ophthalmology, 1986, 101, 130-131.	3.3	17
49	Ultraviolet safety assessments of insect light traps. Journal of Occupational and Environmental Hygiene, 2016, 13, 413-424.	1.0	17
50	The effects of ultravioletâ€A radiation on visual evoked potentials in the young human eye. Acta Ophthalmologica, 1996, 74, 553-557.	0.3	16
51	Laser Effects on Vision and Ocular Exposure Limits. Journal of Occupational and Environmental Hygiene, 1996, 11, 313-319.	0.4	13
52	OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN WELDER'S MACULOPATHY. Retinal Cases and Brief Reports, 2007, 1, 169-171.	0.6	13
53	Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation. Journal of Laser Applications, 2008, 20, 98-105.	1.7	13
54	Optical Safety of Comparative Theater Projectors. Health Physics, 2014, 106, 353-364.	0.5	13

#	Article	IF	CITATIONS
55	Intercomparison of Instruments Used for Safety and Performance Measurements of Ultraviolet Germicidal Irradiation Lamps. Journal of Occupational and Environmental Hygiene, 2009, 6, 289-297.	1.0	12
56	Near ultraviolet radiation elicits visual evoked potentials in children. Clinical Neurophysiology, 1999, 110, 379-383.	1.5	11
57	RETINAL PHOTOTOXICITY: A REVIEW OF STANDARD METHODOLOGY FOR EVALUATING RETINAL OPTICAL RADIATION HAZARDS. Health Physics, 2011, 100, 417-434.	0.5	11
58	A New Understanding of Multiple-Pulsed Laser-Induced Retinal Injury Thresholds. Health Physics, 2014, 106, 505-515.	0.5	11
59	Technical Report: Solar Ultraviolet Protection from Sunglasses. Optometry and Vision Science, 2019, 96, 523-530.	1.2	11
60	Intercomparison of Effective Erythemal Irradiance Measurements from Two Types of Broad-Band Instruments during June 1995. Photochemistry and Photobiology, 1998, 68, 179-182.	2.5	10
61	Instrumentation and Measurement of Ultraviolet, Visible, and Infrared Radiation. AIHA Journal, 1971, 32, 415-431.	0.4	9
62	Optical hazard evaluation of dental curing lights*. Community Dentistry and Oral Epidemiology, 1987, 15, 197-201.	1.9	9
63	Temperature rises in the crystalline lens from focal irradiation. Health Physics, 2005, 88, 214-222.	0.5	9
64	Intraocular lens damage from Nd:YAG laser pulses focused in the vitreous Part II: Mode-locked lasers. Journal of Cataract and Refractive Surgery, 1988, 14, 530-532.	1.5	8
65	Radiometry and Laser Safety Standards. Health Physics, 1989, 56, 717-724.	0.5	7
66	The Protective Characteristics of Polycarbonate Lenses Against CO2 Laser Radiation. Journal of Laser Applications, 1993, 5, 49-52.	1.7	7
67	VALIDATION OF ICNIRP ESTIMATES OF TOXICITY THRESHOLDS FOR NIR (785 NM) LIGHT IN THE RETINAS OF PIGMENTED RABBITS. Health Physics, 2006, 90, 3-10.	0.5	7
68	Pupil Size in Outdoor Environments. Health Physics, 2018, 115, 354-359.	0.5	7
69	Neodymium:YAG Laser Safety Considerations. International Ophthalmology Clinics, 1985, 25, 151-157.	0.7	6
70	Scattered laser radiation and broadband actinic ultraviolet plasma emissions during LADARVision excimer refractive surgery. Journal of Cataract and Refractive Surgery, 2005, 31, 1506-1511.	1.5	6
71	Air Disinfection with Germicidal Ultraviolet: For this Pandemic and the Next. Photochemistry and Photobiology, 2021, 97, 464-465.	2.5	6
72	Eye Hazards of Environmental Lighting. Annals of the New York Academy of Sciences, 1985, 453, 114-120.	3.8	5

#	Article	IF	CITATIONS
73	Rationale for laser classification measurement conditions. Journal of Laser Applications, 2007, 19, 197-206.	1.7	5
74	Scattered ultraviolet emissions during refractive surgery using a high-frequency, wavefront-optimized excimer laser platform. Journal of Cataract and Refractive Surgery, 2010, 36, 1344-1348.	1.5	5
75	Ultraviolet Radiation and the Eye. NATO ASI Series Series B: Physics, 1991, , 237-245.	0.2	5
76	Safety of Ophthalmic Excimer Lasers With an Emphasis on Compressed Gases. Journal of Refractive Surgery, 1991, 7, 308-314.	2.3	5
77	Ultraviolet protection factors for clothing: an intercomparison of measurement systems. Photochemistry and Photobiology, 2003, 77, 58-67.	2.5	5
78	Intrabeam viewing of extended-source lasers with telescopes. Journal of Laser Applications, 2007, 19, 89-98.	1.7	4
79	Exposure Geometry and Spectral Environment Determine Photobiological Effects on the Human Eye [¶] ^{â€} . Photochemistry and Photobiology, 2005, 81, 483-489.	2.5	4
80	Cataract Formation by Nearâ€infrared Radiation in Rabbits. Photochemistry and Photobiology, 2021, 97, 372-376.	2.5	4
81	THE SAFETY ASPECTS OF ATMOSPHERIC TRANSMISSION OF LASERS Annals of the New York Academy of Sciences, 1976, 267, 366-372.	3.8	3
82	Report from the ACGIH Physical Agents TLV Committee: Review of the Threshold Limit Value for Noise. Journal of Occupational and Environmental Hygiene, 1993, 8, 618-623.	0.4	3
83	Methods for hazard assessment from viewing fiber optics with eye loupes. Journal of Laser Applications, 2004, 16, 178-187.	1.7	3
84	Ultraviolet Radiation and the Eye. , 2006, , 259-278.		3
85	Eye Safety of Laser and Light-Based Devices. , 2009, , 499-516.		3
86	Interlaboratory Evaluation of Ultraviolet Radiation Emissions from Compact Fluorescent Lamps. Photochemistry and Photobiology, 2016, 92, 348-354.	2.5	3
87	Laser medicine. Current Opinion in Ophthalmology, 1990, 1, 60-63.	2.9	2
88	Safety of Medical Excimer Lasers with an Emphasis on Compressed Gases. Journal of Laser Applications, 1991, 3, 59-62.	1.7	2
89	Risk assessment of optically aided viewing. Journal of Laser Applications, 1998, 10, 93-98.	1.7	2

6

#	Article	IF	CITATIONS
91	Transient visual effects and laser safety standards. Journal of Radiological Protection, 1997, 17, 229-230.	1.1	2
92	An analysis of a reported occupational exposure to infrared radiation. AIHA Journal, 1978, 39, 63-69.	0.4	1
93	Visible and invisible laser radiation—problems in laser safety terminology. Journal of Laser Applications, 2002, 14, 260-263.	1.7	1
94	Optical performance of welding curtains and existing standards. Journal of Occupational and Environmental Hygiene, 2021, 18, 314-322.	1.0	1
95	The Ambient Light Environment and Ocular Hazards. Advances in Experimental Medicine and Biology, 1977, 77, 211-221.	1.6	1
96	Experience with laser safety in the USA-a review. Lasers in Medical Science, 1989, 4, 165-175.	2.1	0
97	Spectral transmission of IOLs expressed as a virtual age. British Journal of Ophthalmology, 2007, 91, 1261-1262.	3.9	Ο
98	Incoherent light sources, standards, and time-weighting. , 2017, , .		0
99	Incoherent light sources – why worry?. , 2019, , .		Ο
100	Threshold Ocular Exposure to Near Infrared Radiation for Causing Acute Opacification in the Rabbit Lens. Photochemistry and Photobiology, 2021, , .	2.5	0