
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507698/publications.pdf Version: 2024-02-01

DENC CAO

#	Article	IF	CITATIONS
1	Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. Chinese Journal of Catalysis, 2022, 43, 2045-2056.	6.9	39
2	Hierarchical ZSM-5 Supported CoMn Catalyst for the Production of Middle Distillate from Syngas. Industrial & Engineering Chemistry Research, 2021, 60, 5783-5791.	1.8	9
3	ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation. Applied Catalysis B: Environmental, 2021, 286, 119929.	10.8	73
4	Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation. Journal of CO2 Utilization, 2021, 49, 101543.	3.3	10
5	Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst. Journal of Fuel Chemistry and Technology, 2021, 49, 1132-1139.	0.9	6
6	Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation(China), 2021, 2, 100170.	5.2	21
7	Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chinese Journal of Catalysis, 2021, 42, 2038-2048.	6.9	39
8	The effect of the particle size on Fischer–Tropsch synthesis for ZSM-5 zeolite supported cobalt-based catalysts. Chemical Communications, 2021, 57, 13522-13525.	2.2	6
9	The rare earth elements modified FeK/Al2O3 catalysts for direct CO2 hydrogenation to liquid hydrocarbons. Catalysis Today, 2020, 356, 613-621.	2.2	17
10	Novel Heterogeneous Catalysts for CO ₂ Hydrogenation to Liquid Fuels. ACS Central Science, 2020, 6, 1657-1670.	5.3	182
11	Rationally designed indium oxide catalysts for CO ₂ hydrogenation to methanol with high activity and selectivity. Science Advances, 2020, 6, eaaz2060.	4.7	211
12	Solvent-Free Synthesis of Mg-Incorporated Nanocrystalline SAPO-34 Zeolites via Natural Clay for Chloromethane-to-Olefin Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 4185-4193.	3.2	19
13	Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane. Chinese Journal of Catalysis, 2020, 41, 622-630.	6.9	34
14	Toward a Full One-Pass Conversion for the Fischer–Tropsch Synthesis over a Highly Selective Cobalt Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 8195-8201.	1.8	8
15	Standing Carbonâ€Supported Trace Levels of Metal Derived from Covalent Organic Framework for Electrocatalysis. Small, 2019, 15, e1905363.	5.2	32
16	Selective Transformation of CO ₂ and H ₂ into Lower Olefins over In ₂ O ₃ â€ZnZrO _{<i>x</i>} /SAPOâ€34 Bifunctional Catalysts. ChemSusChem, 2019, 12, 3582-3591.	3.6	103
17	Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catalysis, 2019, 9, 3866-3876.	5.5	177
18	Preparation of Highly Dispersion CuO/MCM-41 Catalysts for CO ₂ Hydrogenation. Journal of Nanoscience and Nanotechnology, 2019, 19, 3218-3222.	0.9	3

#	Article	IF	CITATIONS
19	Single atomic Ag enhances the bifunctional activity and cycling stability of MnO2. Chemical Engineering Journal, 2019, 366, 631-638.	6.6	83
20	A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catalysis Today, 2019, 330, 61-75.	2.2	214
21	Direct conversion of CO2 to long-chain hydrocarbon fuels over K–promoted CoCu/TiO2 catalysts. Catalysis Today, 2018, 311, 65-73.	2.2	67
22	Direct Production of Lower Olefins from CO ₂ Conversion via Bifunctional Catalysis. ACS Catalysis, 2018, 8, 571-578.	5.5	382
23	Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 23366-23377.	5.2	68
24	Facile Solventâ€free Synthesis of Hollow Fiber Catalyst Assembled by <i>c–</i> axis Oriented ZSMâ€5 Crystals. ChemCatChem, 2018, 10, 5619-5626.	1.8	15
25	Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO 2 hydrogenation. Materials Chemistry and Physics, 2018, 215, 211-220.	2.0	30
26	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	4.6	21
27	Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. Journal of Catalysis, 2018, 364, 382-393.	3.1	174
28	Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts. Journal of CO2 Utilization, 2018, 26, 642-651.	3.3	54
29	Effect of alkali metals on the performance of CoCu/TiO 2 catalysts for CO 2 hydrogenation to long-chain hydrocarbons. Chinese Journal of Catalysis, 2018, 39, 1294-1302.	6.9	63
30	Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catalysis Today, 2017, 281, 327-336.	2.2	111
31	Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catalysis, 2017, 7, 3622-3631.	5.5	157
32	Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9, 1019-1024.	6.6	757
33	Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahighâ€Rate Zinc–Air Batteries. Advanced Functional Materials, 2017, 27, 1700041.	7.8	85
34	Preparation and CO 2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. Journal of CO2 Utilization, 2017, 17, 263-272.	3.3	44
35	Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co ₂ C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catalysis, 2017, 7, 8023-8032.	5.5	79
36	A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science and Technology, 2017, 7, 4580-4598.	2.1	385

#	Article	IF	CITATIONS
37	Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO2 hydrogenation to methanol in microreactor. Journal of CO2 Utilization, 2017, 21, 191-199.	3.3	40
38	3 D Imaging and Structural Analysis of a Mesoporous‣ilicaâ€Body‣upported Eggshell Cobalt Catalyst fo Fischer–Tropsch Synthesis. ChemCatChem, 2016, 8, 2920-2929.	^r 1.8	3
39	Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2016, 16, 32-41.	3.3	66
40	Core–shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation. Catalysis Communications, 2016, 84, 56-60.	1.6	79
41	Catalytic performance of spray-dried Cu/ZnO/Al 2 O 3 /ZrO 2 catalysts for slurry methanol synthesis from CO 2 hydrogenation. Journal of CO2 Utilization, 2016, 15, 72-82.	3.3	94
42	Yttrium oxide modified Cu/ZnO/Al ₂ O ₃ catalysts via hydrotalcite-like precursors for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2015, 5, 4365-4377.	2,1	99
43	Core@shell Co3O4@C-m-SiO2 catalysts with inert C modified mesoporous channel for desired middle distillate. Applied Catalysis A: General, 2015, 492, 93-99.	2.2	27
44	Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide. Journal of CO2 Utilization, 2015, 11, 41-48.	3.3	84
45	Recent advances in the catalytic conversion of CO2 to value added compunds. Science China Chemistry, 2015, 58, 79-92.	4.2	21
46	Enhanced Interactions between Gold and MnO ₂ Nanowires for Water Oxidation: A Comparison of Different Chemical and Physical Preparation Methods. ACS Sustainable Chemistry and Engineering, 2015, 3, 2049-2057.	3.2	33
47	Ultra-tiny Co(OH) ₂ particles supported on graphene oxide for highly efficient electrocatalytic water oxidation. RSC Advances, 2015, 5, 39075-39079.	1.7	23
48	Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method. Journal of Materials Chemistry A, 2015, 3, 23990-23999.	5.2	46
49	CO2 sorption in wet ordered mesoporous silica kit-6: effects of water content and mechanism on enhanced sorption capacity. Adsorption, 2014, 20, 883-888.	1.4	25
50	Influence of element doping on La–Mn–Cu–O based perovskite precursors for methanol synthesis from CO ₂ /H ₂ . RSC Advances, 2014, 4, 48888-48896.	1.7	30
51	Methanol synthesis from CO2 hydrogenation over La–M–Cu–Zn–O (MÂ=ÂY, Ce, Mg, Zr) catalysts derive from perovskite-type precursors. Journal of Power Sources, 2014, 251, 113-121.	d 4.0	115
52	Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catalysis Communications, 2014, 50, 78-82.	1.6	75
53	Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO ₂ to Methanol. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 1155-1162.	2.2	11
54	The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3–ZnO catalysts. Catalysis Science and Technology, 2013, 3, 2801.	2.1	92

#	Article	IF	CITATIONS
55	Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2013, 468, 442-452.	2.2	209
56	Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298, 51-60.	3.1	322
57	Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2013, 2, 16-23.	3.3	54
58	Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors. Catalysis Today, 2012, 194, 9-15.	2.2	80
59	Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catalysis Science and Technology, 2012, 2, 1447.	2.1	95
60	Fluorescent Nanotubes of D–π–A Dyes Formed at the Air/Water Interface. Journal of Dispersion Science and Technology, 2011, 32, 265-268.	1.3	1
61	Photoelectric Response from D–i̇́€â€"A Dye's Langmuir-Blodgett Monolayer Film Modified Indium-Tin Oxide Electrode. Journal of Dispersion Science and Technology, 2010, 32, 56-59.	1.3	Ο
62	Expeditious Construction of (+)-Mintlactone via Intramolecular Hetero-Pausonâ^'Khand Reaction. Journal of Organic Chemistry, 2009, 74, 2592-2593.	1.7	35
63	Compression Induced Helical Nanotubes in a Spreading Film of a Bolaamphiphile at the Air/Water Interface. Langmuir, 2006, 22, 6727-6729.	1.6	32
64	Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile. Langmuir, 2006, 22, 775-779.	1.6	107
65	Inter- and intra-molecular H-bonds induced different nanostructures from a multi-H-bonding (MHB) amphiphile: nanofibers and nanodisksElectronic supplementary information (ESI) available: experimental data, AFM, SEM images, XRD, FT-IR and CD spectra of gels I and II, and molecular models. See http://www.rsc.org/suppdata/cc/b4/b402956a/. Chemical Communications, 2004, , 1174.	2.2	51