Yong Jun Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. Journal of the European Ceramic Society, 2015, 35, 1469-1476.	5.7	220
2	Enhanced Electrocaloric Effects in Spark Plasma‣intered <scp><scp>Ba</scp></scp> _{0.65} <scp><scp>Sr</scp>0.35<scp>TiOCeramics at Room Temperature. Journal of the American Ceramic Society, 2013, 96, 1021-1023.</scp></scp>	>< \$s& p> <sı< td=""><td>ubuo£ox/sub≻á</td></sı<>	ubuo£ox/sub≻á

3	From core–shell Ba _{0.4} Sr _{0.6} TiO ₃ @SiO ₂ particles to dense ceramics with high energy storage performance by spark plasma sintering. Journal of Materials Chemistry A, 2018, 6, 4477-4484.	10.3	92
4	Camellia pollen-derived carbon for supercapacitor electrode material. Journal of Power Sources, 2018, 394, 9-16.	7.8	83
5	Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. Journal of the European Ceramic Society, 2017, 37, 2099-2104.	5.7	70
6	Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution. Ceramics International, 2014, 40, 11269-11276.	4.8	65
7	Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Applied Physics Letters, 2007, 91, 092912.	3.3	59
8	Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba ₄ Nd ₂ Fe ₂ Nb ₈ O ₃₀ ceramics. Applied Physics Letters, 2014, 104, 082912.	3.3	51
9	A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1- <i>x</i> Sr <i>x</i> TiO3 single crystals. Applied Physics Letters, 2018, 112, .	3.3	49
10	Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. Journal of Materials Science, 2019, 54, 4511-4517.	3.7	48
11	Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering. Journal of Alloys and Compounds, 2017, 701, 439-446.	5.5	39
12	Magnetodielectric effects of Y3Fe5â^'xTixO12+x/2 ceramics. Applied Physics Letters, 2012, 100, .	3.3	32
13	Diffused ferroelectrics of Ba6Ti2Nb8O30 and Sr6Ti2Nb8O30 with filled tungsten-bronze structure. Journal of Applied Physics, 2005, 98, 084110.	2.5	28
14	Transparent Barium Strontium Titanate Ceramics Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 1343-1345.	3.8	27
15	The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor. Journal of Colloid and Interface Science, 2018, 524, 209-218.	9.4	27
16	Room temperature multiferroic Ba4Bi2Fe2Nb8O30: Structural, dielectric, and magnetic properties. Journal of Applied Physics, 2010, 108, 014111.	2.5	24
17	Effects of <scp><scp>Al</scp> </scp> Substitution on Dielectric Response and Magnetic Behavior of Yttrium Iron Garnet Ceramics. Journal of the American Ceramic Society, 2012, 95, 1671-1675.	3.8	24
18	Dense YMn ₂ O ₅ Ceramics Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society, 2008, 91, 3728-3730.	3.8	21

Yong Jun Wu

#	Article	IF	CITATIONS
19	Defect dipoles induced highâ€energy storage density in Mnâ€doped <scp>BST</scp> ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society, 2019, 102, 1904-1911.	3.8	21
20	Crystal structures, dielectric properties, and phase transition in hybrid improper ferroelectric Sr3Sn2O7-based ceramics. Journal of Applied Physics, 2019, 125, .	2.5	19
21	Factors influencing the formation and growth of faulted loops in BF+2â€implanted silicon. Journal of Applied Physics, 1981, 52, 3520-3527.	2.5	18
22	Dielectric and ferroelectric properties of Ba _{1â^'x} Sr _x TiO ₃ ceramics: effects of grain size and ferroelectric domain. Advances in Applied Ceramics, 2013, 112, 270-276.	1.1	17
23	Giant room-temperature magnetodielectric coupling in spark plasma sintered brownmillerite ceramics. Applied Physics Letters, 2014, 105, .	3.3	17
24	Improved energy storage performance of Ba0.4Sr0.6TiO3 nanocrystalline ceramics prepared by using oxalate co-precipitation and spark plasma sintering. Materials Research Bulletin, 2019, 113, 141-145.	5.2	17
25	Synthesis and dielectric characteristics of La0.5Bi0.5MnO3 ceramics. Applied Physics A: Materials Science and Processing, 2009, 97, 191-194.	2.3	15
26	Thermodynamic and phase-field studies of phase transitions, domain structures, and switching for Ba(Zr Ti1â^')O3 solid solutions. Acta Materialia, 2020, 186, 609-615.	7.9	12
27	Magnetoelectric effect in Sm-substituted tungsten bronze structure Ba4(Sm La1-)2Fe2Nb8O30 ceramics. Journal of Alloys and Compounds, 2019, 786, 126-133.	5.5	10
28	Effects of NaF upon sintering temperature of Ba(Mg1/3Ta2/3)O3 dielectric ceramics. Journal of Materials Science: Materials in Electronics, 1996, 7, 427.	2.2	8
29	Dielectric ceramics of Ba6-3xNd8 2x(Zr,Ti)18O54. Ferroelectrics, 1999, 233, 271-277.	0.6	8
30	Oxygen-vacancy-induced reversible control of ferroelectric polarization in Ba4Eu2Fe2Nb8O30 ceramics. Journal of Applied Physics, 2018, 124, .	2.5	8
31	Contribution of Electron Hopping on Colossal Dielectric Response of Bi-Substituted LaMnO3Ceramics. Ferroelectrics, 2009, 388, 133-139.	0.6	6
32	Size-dependent structural preferences and magnetization enhancement in 0.5Bi0.8La0.2FeO3–0.5PbTiO3. Journal of Applied Physics, 2010, 108, .	2.5	6
33	The origin of enhanced magnetodielectric effect in Y3-xYbxFe5O12 ceramics. Journal of Applied Physics, 2018, 124, .	2.5	6
34	Dielectric characteristics of Ba(Mg1/3Ta2/3)O3 ceramics sintered at low temperatures. Journal of Materials Science: Materials in Electronics, 1996, 7, 369.	2.2	5
35	Effects of Sr-substitution on structure, dielectric, ferroelectric and magnetic properties of (SrxBa1-x)4Sm2Fe2Nb8O30 ceramics. Journal of Alloys and Compounds, 2019, 770, 143-148.	5.5	5
36	Pinched <i>P-E</i> hysteresis loops in Ba4Sm2Fe0.5Ti3Nb6.5O30 ceramic with tungsten bronze structure. Applied Physics Letters, 2019, 115, .	3.3	5

Yong Jun Wu

#	Article	IF	CITATIONS
37	Effects of Bi-Substitution on Dielectric and Ferroelectric Properties of Yttrium Iron Garnet Ceramics. Ferroelectrics, 2014, 458, 25-30.	0.6	3
38	Optimized supercapacitive performance of graphene-hydrogel by porous texture controlling. Journal of Porous Materials, 2020, 27, 11-19.	2.6	3
39	Simultaneously enhanced ferroelectric and magnetic properties in Fe-substituted Ba4Sm2Fe Ti4-2Nb6+O30 ceramics. Journal of Alloys and Compounds, 2019, 775, 1199-1205.	5.5	2
40	Modified ferroelectricity in multiferroic Ba4Nd2Fe2Nb8O30 ceramics via atmosphere treatment. Journal of Materials Science: Materials in Electronics, 2022, 33, 16414-16424.	2.2	2
41	Diffusion in Multi-Compositional PZ-PT-PZN Ceramics Prepared by Spark Plasma Sintering. Ferroelectrics, 2009, 388, 140-146.	0.6	0
42	Barium Titanate Tetragonal Prism Arrays: Preparation and Characterization. Ferroelectrics, 2009, 388, 147-152.	0.6	0