
Simon R Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507532/publications.pdf Version: 2024-02-01

SIMON P THENER

#	Article	IF	CITATIONS
1	An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. Nature Plants, 2022, 8, 670-681.	9.3	32
2	Flexible and digestible wood caused by viral-induced alteration of cell wall composition. Current Biology, 2022, , .	3.9	0
3	The molecular basis of plant cellulose synthase complex organisation and assembly. Biochemical Society Transactions, 2021, 49, 379-391.	3.4	19
4	A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis. Plant Cell, 2020, 32, 319-335.	6.6	103
5	Organ-specific genetic interactions between paralogues of the <i>PXY</i> and <i>ER</i> receptor kinases enforce radial patterning in <i>Arabidopsis</i> vascular tissue. Development (Cambridge), 2019, 146, .	2.5	23
6	Cellulose synthase complex organization and cellulose microfibril structure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170048.	3.4	51
7	Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis. Plant Physiology, 2018, 177, 151-167.	4.8	31
8	An essential role for Abscisic acid in the regulation of xylem fibre differentiation. Development (Cambridge), 2018, 145, .	2.5	23
9	Using CellProfiler to Analyze and Quantify Vascular Morphology. Methods in Molecular Biology, 2017, 1544, 179-189.	0.9	3
10	Functional Analysis of Cellulose Synthase (CESA) Protein Class Specificity. Plant Physiology, 2017, 173, 970-983.	4.8	48
11	Realizing pipe dreams – a detailed picture of vascular development. Journal of Experimental Botany, 2017, 68, 1-4.	4.8	6
12	Regulation of vascular cell division. Journal of Experimental Botany, 2017, 68, 27-43.	4.8	69
13	A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Frontiers in Plant Science, 2017, 8, 37.	3.6	84
14	S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science, 2016, 353, 166-169.	12.6	75
15	A Specific Class of Short Treadmilling Microtubules Enhances Cortical Microtubule Alignment. Molecular Plant, 2016, 9, 1214-1216.	8.3	5
16	From the nucleus to the apoplast: building the plant's cell wall. Journal of Experimental Botany, 2016, 67, 445-447.	4.8	3
17	Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany, 2016, 67, 515-531.	4.8	216
18	Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana. Plant Methods, 2015, 11, 46.	4.3	50

SIMON R TURNER

#	Article	IF	CITATIONS
19	Wood Formation in Trees Is Increased by Manipulating PXY-Regulated Cell Division. Current Biology, 2015, 25, 1050-1055.	3.9	123
20	Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry, 2015, 112, 91-99.	2.9	131
21	SPIRAL2 Determines Plant Microtubule Organization by Modulating Microtubule Severing. Current Biology, 2013, 23, 1902-1907.	3.9	123
22	<i>WOX4</i> and <i>WOX14</i> act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development (Cambridge), 2013, 140, 2224-2234.	2.5	251
23	Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnology for Biofuels, 2013, 6, 94.	6.2	36
24	Plant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling. PLoS Genetics, 2012, 8, e1002997.	3.5	172
25	Arabidopsis genes <i>IRREGULAR XYLEM</i> (<i>IRX15</i>) and <i>IRX15L</i> encode DUF579 ontaining proteins that are essential for normal xylan deposition in the secondary cell wall. Plant Journal, 2011, 66, 401-413.	5.7	134
26	Arabidopsis – a powerful model system for plant cell wall research. Plant Journal, 2010, 61, 1107-1121.	5.7	184
27	Absence of branches from xylan in Arabidopsis <i>gux</i> mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17409-17414.	7.1	283
28	Trafficking of the cellulose synthase complex in developing xylem vessels. Biochemical Society Transactions, 2010, 38, 755-760.	3.4	20
29	Orientation of vascular cell divisions in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 730-732.	2.4	13
30	The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development (Cambridge), 2010, 137, 767-774.	2.5	309
31	Trafficking of the Plant Cellulose Synthase Complex. Plant Physiology, 2010, 153, 427-432.	4.8	66
32	A Cellulose Synthase-Containing Compartment Moves Rapidly Beneath Sites of Secondary Wall Synthesis. Plant and Cell Physiology, 2009, 50, 584-594.	3.1	38
33	Elucidating the Mechanisms of Assembly and Subunit Interaction of the Cellulose Synthase Complex of Arabidopsis Secondary Cell Walls. Journal of Biological Chemistry, 2009, 284, 3833-3841.	3.4	108
34	Characterization of IRX10 and IRX10â€like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant Journal, 2009, 57, 732-746.	5.7	279
35	A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods, 2009, 5, 14.	4.3	53
36	The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant Journal, 2008. 54. 794-805.	5.7	140

SIMON R TURNER

#	Article	IF	CITATIONS
37	A novel mechanism important for the alignment of microtubules. Plant Signaling and Behavior, 2008, 3, 238-239.	2.4	7
38	Tracheary Element Differentiation. Annual Review of Plant Biology, 2007, 58, 407-433.	18.7	208
39	Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal, 2007, 52, 1154-1168.	5.7	338
40	Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant Journal, 2007, 52, 742-751.	5.7	126
41	Cell Walls: Monitoring Integrity with THE Kinase. Current Biology, 2007, 17, R541-R542.	3.9	9
42	PXY, a Receptor-like Kinase Essential for Maintaining Polarity during Plant Vascular-Tissue Development. Current Biology, 2007, 17, 1061-1066.	3.9	361
43	Cellulose Synthesis in the Arabidopsis Secondary Cell Wall. , 2007, , 49-61.		4
44	hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. Plant Journal, 2005, 44, 271-289.	5.7	41
45	Identification of Novel Genes in Arabidopsis Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. Plant Cell, 2005, 17, 2281-2295.	6.6	715
46	The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant Journal, 2004, 37, 730-740.	5.7	166
47	Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose, 2004, 11, 329-338.	4.9	100
48	Control of Cellulose Synthase Complex Localization in Developing Xylem. Plant Cell, 2003, 15, 1740-1748.	6.6	228
49	Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1450-1455.	7.1	657
50	Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development (Cambridge), 2003, 130, 2139-2148.	2.5	57
51	Vascular Patterning. The Arabidopsis Book, 2003, 2, e0073.	0.5	33
52	Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana. Phytochemistry, 2002, 61, 7-14.	2.9	51
53	Analysis of Secondary Cell Wall Formation in Arabidopsis. Progress in Biotechnology, 2001, 18, 85-92.	0.2	1
54	Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant Journal, 2001, 26, 205-216.	5.7	400

SIMON R TURNER

#	Article	IF	CITATIONS
55	Mutations of the secondary cell wall. Plant Molecular Biology, 2001, 47, 209-219.	3.9	56
56	BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant Journal, 2001, 25, 137-148.	5.7	265
57	Mutations of the secondary cell wall. , 2001, , 209-219.		1
58	Multiple Cellulose Synthase Catalytic Subunits Are Required for Cellulose Synthesis in Arabidopsis. Plant Cell, 2000, 12, 2529.	6.6	17
59	Multiple Cellulose Synthase Catalytic Subunits Are Required for Cellulose Synthesis in Arabidopsis. Plant Cell, 2000, 12, 2529-2539.	6.6	441
60	The <i>gapped xylem</i> mutant identifies a common regulatory step in secondary cell wall deposition. Plant Journal, 2000, 24, 477-488.	5.7	1
61	The gapped xylem mutant identifies a common regulatory step in secondary cell wall deposition. Plant Journal, 2000, 24, 477-488.	5.7	27
62	The irregular xylem3 Locus of Arabidopsis Encodes a Cellulose Synthase Required for Secondary Cell Wall Synthesis. Plant Cell, 1999, 11, 769-779.	6.6	492
63	Collapsed Xylem Phenotype of Arabidopsis Identifies Mutants Deficient in Cellulose Deposition in the Secondary Cell Wall. Plant Cell, 1997, 9, 689.	6.6	130
64	An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog Proceedings of the United States of America, 1995, 92, 6743-6747.	7.1	379
65	T-protein of the glycine decarboxylase multienzyme complex: evidence for partial similarity to formyltetrahydrofolate synthetase. Plant Molecular Biology, 1995, 27, 1215-1220.	3.9	20
66	Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta, 1993, 190, 468.	3.2	53
67	The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum). Molecular Genetics and Genomics, 1993, 236-236, 402-408.	2.4	45
68	The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Molecular Biology, 1990, 14, 793-803.	3.9	34