Masaaki Fujii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507215/publications.pdf

Version: 2024-02-01

255 6,222 42 61
papers citations h-index g-index

264 264 264 3479
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Gas phase protonated nicotine is a mixture of pyridine- and pyrrolidine-protonated conformers: implications for its native structure in the nicotinic acetylcholine receptor. Physical Chemistry Chemical Physics, 2022, 24, 5786-5793.	1.3	8
2	Excited state dynamics of protonated dopamine: hydration and conformation effects. Physical Chemistry Chemical Physics, 2022, 24, 10737-10744.	1.3	2
3	Collision-assisted stripping for determination of microsolvation-dependent protonation sites in hydrated clusters by cryogenic ion trap infrared spectroscopy: the case of benzocaineH ⁺ (H ₂ O) _{<i>n</i>>CbenzocaineH⁺(H₂O)_{<i>n</i>Description of the proton at the proton and proton at the pro}}	1.3	11
4	Stepwise dissociation of ion pairs by water molecules: cation-dependent separation mechanisms between carboxylate and alkali-earth metal ions. Physical Chemistry Chemical Physics, 2022, 24, 12121-12125.	1.3	4
5	Cryogenic ion spectroscopy of adenine complexes containing alkali metal cations. Physical Chemistry Chemical Physics, 2021, 23, 6783-6790.	1.3	2
6	Rethinking Ion Transport by Ionophores: Experimental and Computational Investigation of Single Water Hydration in Valinomycin-K ⁺ Complexes. Journal of Physical Chemistry Letters, 2021, 12, 1754-1758.	2.1	16
7	Real-time observation of photoionization-induced water migration dynamics in 4-methylformanilide–water by picosecond time-resolved infrared spectroscopy and ⟨i⟩ab initio⟨ i⟩ molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 24, 73-85.	1.3	8
8	Potassium and sodium ion complexes with a partial peptide of the selectivity filter in K ⁺ channels studied by cold ion trap infrared spectroscopy: the effect of hydration. Physical Chemistry Chemical Physics, 2021, 23, 12045-12050.	1.3	7
9	Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol–(NH ₃) _n clusters. Chemical Science, 2021, 12, 3836-3856.	3.7	18
10	Hydration-controlled excited-state relaxation in protonated dopamine studied by cryogenic ion spectroscopy. Journal of Chemical Physics, 2021, 155, 151101.	1.2	4
11	Double Ion Trap Laser Spectroscopy of Alkali Metal Ion Complexes with a Partial Peptide of the Selectivity Filter in K ⁺ Channels─Temperature Effect and Barrier for Conformational Conversions. Journal of Physical Chemistry A, 2021, 125, 9609-9618.	1.1	12
12	Distribution of trace impurities in microvolumes and analysis of concentration using laser sputtered neutral mass spectrometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 064002.	0.6	0
13	lsomer-Selective Spectroscopy and Dynamics of Phenol–Ar _{<i>n</i>} (<i>n</i> â‰ುち) Clusters. Journal of Physical Chemistry A, 2021, 125, 9969-9981.	1.1	2
14	IR super-resolution imaging of avian feather keratins detected by using vibrational sum-frequency generation. Biophysical Chemistry, 2020, 267, 106482.	1.5	2
15	Cryogenic Ion Spectroscopy of a Singly Protonated Peptide DYYVVR: Locating Phosphorylation Sites of a Kinase Domain. Journal of Physical Chemistry Letters, 2020, 11, 7103-7108.	2.1	6
16	Chiral discrimination between tyrosine and \hat{l}^2 -cyclodextrin revealed by cryogenic ion trap infrared spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 24887-24894.	1.3	15
17	Improvement of ionization yield in sputtered neutral mass spectrometry using pulsed infrared and ultraviolet lasers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 034011.	0.6	3
18	Alkali and Alkaline Earth Metal Ions Complexes with a Partial Peptide of the Selectivity Filter in K + Channels Studied by a Cold Ion Trap Infrared Spectroscopy. ChemPhysChem, 2020, 21, 687-687.	1.0	0

#	Article	IF	CITATIONS
19	Alkali and Alkaline Earth Metal Ions Complexes with a Partial Peptide of the Selectivity Filter in K ⁺ Channels Studied by a Cold Ion Trap Infrared Spectroscopy. ChemPhysChem, 2020, 21, 712-724.	1.0	17
20	Excited-state proton transfer in protonated adrenaline revealed by cryogenic UV photodissociation spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 11498-11507.	1.3	4
21	Excited state hydrogen transfer dynamics in phenol–(NH ₃) ₂ studied by picosecond UV-near IR-UV time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 5740-5748.	1.3	4
22	lonization-Induced π → H Site Switching in Resorcinol–Ar _{<i>n</i>} (<i>n</i> = 1 and 2) Clusters Probed by Infrared Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 6828-6839.	1.1	2
23	Probing the selectivity of Li ⁺ and Na ⁺ cations on noradrenaline at the molecular level. Faraday Discussions, 2019, 217, 396-413.	1.6	3
24	lon–peptide interactions between alkali metal ions and a termini-protected dipeptide: modeling a portion of the selectivity filter in K ⁺ channels. Physical Chemistry Chemical Physics, 2019, 21, 561-571.	1.3	21
25	Can the Partial Peptide SIVSF of the $\hat{1}^2$ sub>2-Adrenergic Receptor Recognize Chirality of the Epinephrine Neurotransmitter?. Journal of Physical Chemistry Letters, 2019, 10, 2470-2474.	2.1	13
26	Time-Resolved Study on Photo-Initiated Isomerization of Clusters. , 2019, , 367-395.		0
27	Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottomâ€Up Approach. Angewandte Chemie - International Edition, 2018, 57, 5626-5629.	7.2	26
28	Stereochemistry-dependent structure of hydrogen-bonded protonated dimers: the case of 1-amino-2-indanol. Physical Chemistry Chemical Physics, 2018, 20, 12430-12443.	1.3	10
29	Cation-Size-Dependent Conformational Locking of Glutamic Acid by Alkali Ions: Infrared Photodissociation Spectroscopy of Cryogenic Ions. Journal of Physical Chemistry B, 2018, 122, 2295-2306.	1.2	5
30	Complex molecular systems: a frontier of molecular science. Physical Chemistry Chemical Physics, 2018, 20, 2945-2946.	1.3	0
31	Innentitelbild: Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach (Angew. Chem. 20/2018). Angewandte Chemie, 2018, 130, 5658-5658.	1.6	0
32	Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottomâ€Up Approach. Angewandte Chemie, 2018, 130, 5728-5731.	1.6	3
33	Sequential microhydration of cationic 5-hydroxyindole (5HI ⁺): infrared photodissociation spectra of 5HI ⁺ â \in "W _n clusters (W = H ₂ O,) Tj ETQq1	1 01788431	4 r gв Т /Оver
34	Electronâ€Proton Transfer Mechanism of Excitedâ€State Hydrogen Transfer in Phenolâ€(NH ₃ (sub> <i>n</i> (<i>n=</i>)3 and 5). Chemistry - A European Journal, 2018, 24, 881-890.	1.7	8
35	A theoretical study on the size-dependence of ground-state proton transfer in phenol–ammonia clusters. Physical Chemistry Chemical Physics, 2018, 20, 3265-3276.	1.3	8
36	Real-time observation of the photoionization-induced water rearrangement dynamics in the 5-hydroxyindole–water cluster by time-resolved IR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 3079-3091.	1.3	16

#	Article	IF	CITATIONS
37	Probing chirality recognition of protonated glutamic acid dimers by gas-phase vibrational spectroscopy and first-principles simulations. Physical Chemistry Chemical Physics, 2018, 20, 28452-28464.	1.3	19
38	Matrix and element dependences of useful yield in Si and SiO2 matrices using laser-ionization sputtered neutral mass spectrometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 03F128.	0.6	4
39	Entropic effects make a more tightly folded conformer of a \hat{l}^2 -amino acid less stable: UV-UV hole burning and IR dip spectroscopy of $<$ scp $>$ l $<$ scp $>$ l $<$ sup $>$ l sup $>$ -homotryptophan using a laser desorption supersonic jet technique. Physical Chemistry Chemical Physics, 2018, 20, 19979-19986.	1.3	3
40	Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide ⁺ –(H ₂ O) _n clusters (<i>n</i>). Physical Chemistry Chemical Physics, 2018, 20, 3148-3164.	1.3	15
41	Electron-proton transfer mechanism of excited-state hydrogen transfer in phenolâ [~] (NH3) (n = 5) studied by delayed ionization detected femtosecond time-resolved NIR spectroscopy. Chemical Physics, 2018, 515, 580-585.	0.9	6
42	Conformation of protonated glutamic acid at room and cryogenic temperatures. Physical Chemistry Chemical Physics, 2017, 19, 10767-10776.	1.3	16
43	A conformational study of protonated noradrenaline by UV–UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method. Physical Chemistry Chemical Physics, 2017, 19, 10777-10785.	1.3	27
44	A structural study on the excimer state of an isolated benzene dimer using infrared spectroscopy in the skeletal vibration region. Physical Chemistry Chemical Physics, 2017, 19, 22759-22776.	1.3	20
45	Deciphering environment effects in peptide bond solvation dynamics by experiment and theory. Physical Chemistry Chemical Physics, 2017, 19, 22564-22572.	1.3	11
46	High-cooling-efficiency cryogenic quadrupole ion trap and UV-UV hole burning spectroscopy of protonated tyrosine. Journal of Molecular Spectroscopy, 2017, 332, 45-51.	0.4	65
47	Photoionization-induced π ↔ H site switching dynamics in phenol ⁺ –Rg (Rg = Ar, Kr) dimers probed by picosecond time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 24746-24754.	1.3	19
48	Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine. Journal of Physical Chemistry A, 2016, 120, 2179-2184.	1.1	8
49	Probing Solvation Dynamics around Aromatic and Biological Molecules at the Single-Molecular Level. Chemical Reviews, 2016, 116, 5432-5463.	23.0	78
50	Gas phase ultraviolet and infrared spectroscopy on a partial peptide of \hat{l}^2 ₂ -adrenoceptor SIVSF-NH ₂ by a laser desorption supersonic jet technique. Physical Chemistry Chemical Physics, 2016, 18, 23277-23284.	1.3	19
51	Theoretical Study on the Size Dependence of Ground-State Proton Transfer in 1-Naphthol–Ammonia Clusters. Journal of Physical Chemistry A, 2016, 120, 7167-7174.	1.1	6
52	Anharmonic Vibrational Analyses of Pentapeptide Conformations Explored with Enhanced Sampling Simulations. Journal of Physical Chemistry B, 2016, 120, 10199-10213.	1.2	11
53	Structural motifs of 2-(2-fluoro-phenyl)-ethylamine conformers. Physical Chemistry Chemical Physics, 2016, 18, 1191-1201.	1.3	10
54	Spectroscopic study of jet-cooled indole-3-carbinol by laser desorption technique: Franck–Condon simulations and anharmonic calculations. Chemical Physics Letters, 2015, 638, 237-243.	1.2	2

#	Article	IF	CITATIONS
55	Mass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol–Ar cluster near the ionization threshold. Physical Chemistry Chemical Physics, 2015, 17, 2494-2503.	1.3	12
56	Trapped Hydronium Radical Produced by Ultraviolet Excitation of Substituted Aromatic Molecule. Journal of Physical Chemistry A, 2015, 119, 12730-12735.	1.1	6
57	Stepwise Microhydration of Aromatic Amide Cations: Formation of Water Solvation Network Revealed by Infrared Spectra of Formanilide ⁺ –(H ₂ O) _{<i>n</i>} Clusters (<i>n</i>) â‰ುऽ). Journal of Physical Chemistry B, 2015, 119, 1388-1406.	1.2	32
58	Single water solvation dynamics in the 4-aminobenzonitrile–water cluster cation revealed by picosecond time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 29969-29977.	1.3	20
59	Real time observation of the excimer formation dynamics of a gas phase benzene dimer by picosecond pump–probe spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 25989-25997.	1.3	27
60	Electron–Proton Decoupling in Excitedâ€State Hydrogen Atom Transfer in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 15089-15093.	7.2	20
61	The mechanism of excited-state proton transfer in 1-naphthol–piperidine clusters. Physical Chemistry Chemical Physics, 2015, 17, 25393-25402.	1.3	4
62	Theoretical Study on the Size Dependence of Excited State Proton Transfer in 1-Naphthol–Ammonia Clusters. Journal of Physical Chemistry B, 2015, 119, 2415-2424.	1.2	9
63	Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H2O)n cluster cations with n â‰뼈. Journal of Chemical Physics, 2014, 141, 214301.	1.2	29
64	UV–UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique. Chemical Physics, 2014, 445, 21-30.	0.9	9
65	lonization-induced π → H site-switching in phenol–CH ₄ complexes studied using IR dip spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 110-116.	1.3	13
66	Microsolvation of the acetanilide cation (AA ⁺) in a nonpolar solvent: IR spectra of AA ⁺ –L _n clusters (L = He, Ar, N ₂ ; n ≶0). Physical Chemistry Chemical Physics, 2014, 16, 7980-7995.	1.3	26
67	Fast Nonradiative Decay in <i>>o</i> -Aminophenol. Journal of Physical Chemistry A, 2014, 118, 2056-2062.	1.1	20
68	Solvation Dynamics of a Single Water Molecule Probed by Infrared Spectraâ€"Theory Meets Experiment. Angewandte Chemie - International Edition, 2014, 53, 14601-14604.	7.2	31
69	Solvent Migration in Microhydrated Aromatic Aggregates: Ionizationâ€Induced Site Switching in the 4â€Aminobenzonitrile–Water Cluster. Chemistry - A European Journal, 2014, 20, 2031-2039.	1.7	21
70	Structure of 1-naphtholâ€"water clusters in the S1 state studied by UVâ€"IR fluorescence dip spectroscopy and ab initio molecular orbital calculations. Chemical Physics Letters, 2013, 557, 19-25.	1.2	4
71	Unusual Behavior in the First Excited State Lifetime of Catechol. Journal of Physical Chemistry Letters, 2013, 4, 3819-3823.	2.1	23
72	Revised conformational assignments and conformational evolution of tyrosine by laser desorption supersonic jet laser spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 5163.	1.3	39

#	Article	IF	CITATIONS
73	Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique. Chemical Physics, 2013, 419, 145-152.	0.9	13
74	Quaternary and secondary structural imaging of a human hair by a VSFG-detected IR super-resolution microscope. Chemical Physics, 2013, 419, 261-265.	0.9	12
75	Conformationally resolved spectra of acetaminophen by UV-UV hole burning and IR dip spectroscopy in the gas phase. Physical Chemistry Chemical Physics, 2013, 15, 957-964.	1.3	18
76	IR Spectroscopy of the 4â€Aminobenzonitrile–Ar Cluster in the S O , S 1 Neutral and D O Cationic States. ChemPhysChem, 2013, 14, 741-745.	1.0	13
77	Ground State Proton Transfer in Phenol–(NH ₃) _{<i>n</i>} (<i>n</i> ≤1) Clusters Studied by Mid-IR Spectroscopy in 3–10 μm Range. Journal of Physical Chemistry A, 2013, 117, 1522-1530.	1.1	30
78	MODE-specific deactivation of adenine at the singlet excited states. Journal of Chemical Physics, 2013, 139, 124311.	1.2	4
79	Microsolvation of the 4â€Aminobenzonitrile Cation (ABN +) in a Nonpolar Solvent: IR Spectra of ABN + L n (L=Ar and N 2 , n â‰ 4). ChemPhysChem, 2013, 14, 728-740.	1.0	17
80	Imaging of Polycyclic Aromatic Hydrocarbons by Means of Sputtered Neutrals Mass Spectrometry Using a Diode-pumped Solid-State Laser. Analytical Sciences, 2013, 29, 291-295.	0.8	7
81	Laser Desorption Supersonic Jet Spectroscopy of Octopamine by Its Hydrochloride Salt. Chemistry Letters, 2013, 42, 1166-1167.	0.7	5
82	IR–UV Double Resonance Spectroscopy as Implemented by Polarized Laser Schemes: Probing Orientations of Vibrational Transition Dipole Moments. Chemistry Letters, 2013, 42, 1070-1072.	0.7	0
83	Structural analysis of aerosol particles by microscopic observation using a timeâ€ofâ€flight secondary ion mass spectrometer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6726-6737.	1.2	10
84	IR Super-Resolution Microspectroscopy and its Application to Single Cells. Current Pharmaceutical Biotechnology, 2013, 14, 159-166.	0.9	0
85	Selective detection of polyaromatic hydrocarbons on diesel exhaust particles using sputtered neutral mass spectrometry. Surface and Interface Analysis, 2013, 45, 1309-1312.	0.8	4
86	Characterization of Black Carbon in Fine Aerosol Particles Using High Lateral Resolution TOF-SIMS. Analytical Sciences, 2013, 29, 479-481.	0.8	11
87	Gas-Phase Spectroscopy of Laser-Desorbed Acedan and Proline-Acedan. Bulletin of the Korean Chemical Society, 2013, 34, 2241-2242.	1.0	0
88	A two-color tunable infrared/vacuum ultraviolet spectrometer for high-resolution spectroscopy of molecules in molecular beams. Review of Scientific Instruments, 2012, 83, 014102.	0.6	5
89	IR spectroscopy of monohydrated tryptamine cation: Rearrangement of the intermolecular hydrogen bond induced by photoionization. Journal of Chemical Physics, 2012, 137, 224311.	1.2	23
90	Absorption Spectra and Photochemical Reactions in a Unique Photoactive Protein, Middle Rhodopsin MR. Journal of Physical Chemistry B, 2012, 116, 5888-5899.	1.2	15

#	Article	IF	CITATIONS
91	Ionizationâ€Induced Solvent Migration in Acetanilideâ€Methanol Clusters Inferred from Isomerâ€Selective Infrared Spectroscopy. ChemPhysChem, 2012, 13, 3875-3881.	1.0	14
92	Ionisation-induced site switching dynamics in solvated aromatic clusters: phenol–(rare gas)nclusters as prototypical example. International Reviews in Physical Chemistry, 2012, 31, 131-173.	0.9	53
93	Development of Source Apportionment of Individual Particle by High Resolution Time of Flight-Secondary Ion Mass Spectrometry. Journal of the Vacuum Society of Japan, 2012, 55, 104-107.	0.3	4
94	Watching Water Migration around a Peptide Bond. Angewandte Chemie - International Edition, 2012, 51, 6604-6607.	7.2	63
95	Gas phase IR spectra of tri-peptide Z-Pro-Leu-Gly: Effect of C-terminal amide capping on secondary structure. Chemical Physics Letters, 2012, 531, 41-45.	1.2	15
96	IR Super-resolution Microscope Based on Vibrational Sum-frequency Generation and Its Application to Living Cells. Membrane, 2012, 37, 200-205.	0.0	0
97	Isomer selective IR-UV depletion spectroscopy of 4-fluorotoluene-NH3: evidence for π-proton-acceptor and linear hydrogen-bonded complexes. Physical Chemistry Chemical Physics, 2011, 13, 15633.	1.3	7
98	Mass analyzed threshold ionization spectra of phenolâcArcsub>2c/sub>: ionization energy and cation intermolecular vibrational frequencies. Physical Chemistry Chemical Physics, 2011, 13, 6071-6076.	1.3	24
99	Photoionization-induced large-amplitude pendular motion in phenol ⁺ –Kr. Physical Chemistry Chemical Physics, 2011, 13, 2744-2747.	1.3	32
100	Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 7812.	1.3	23
101	Gas-Phase Spectroscopy of Synephrine by Laser Desorption Supersonic Jet Technique. Journal of Physical Chemistry A, 2011, 115, 10363-10369.	1.1	29
102	Structures and IR/UV spectra of neutral and ionic phenol–Arn cluster isomers (n≤): competition between hydrogen bonding and stacking. Physical Chemistry Chemical Physics, 2011, 13, 13926.	1.3	34
103	lonization-induced π → H site switching dynamics in phenol–Ar ₃ . Physical Chemistry Chemical Physics, 2011, 13, 2409-2416.	1.3	37
104	Gas-phase Infrared Spectroscopy of Monopeptides from 10 to 3 Âμm. Chemistry Letters, 2011, 40, 1157-1158.	0.7	3
105	Development of Low Reflectivity and High Resolution Negative-tone Photoresist. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 397-400.	0.1	5
106	Isomerization reaction in high-n Rydberg states of phenol–Ar/Kr clusters measured by autoionization detected infrared spectroscopy. Chemical Physics Letters, 2011, 513, 208-211.	1.2	16
107	Holeâ€Burning Spectra of <i>m</i> â€Fluorophenol/Ammonia (1:3) Clusters and Their Excited State Hydrogen Transfer Dynamics. ChemPhysChem, 2011, 12, 1928-1934.	1.0	10
108	Detailed analysis of diesel vehicle exhaust emissions: Nitrogen oxides, hydrocarbons and particulate size distributions. Proceedings of the Combustion Institute, 2011, 33, 2895-2902.	2.4	50

#	Article	IF	CITATIONS
109	Visible-super-resolution infrared microscopy using saturated transient fluorescence detected infrared spectroscopy. Optics Communications, 2010, 283, 509-514.	1.0	5
110	Measurement of adiabatic ionization energies of the rotational isomers of n-propylbenzene and m-fluorophenol by direct VUV laser photoionization. Chemical Physics Letters, 2010, 485, 31-35.	1.2	1
111	Dissociation energetics of the phenol+â√Ar2 cluster ion: The role of π→H isomerization. Journal of Chemical Physics, 2010, 133, 154308.	1.2	42
112	Excited state hydrogen transfer dynamics in substituted phenols and their complexes with ammonia: ππâ^—Ï€Ïfâ^— energy gap propensity and ortho-substitution effect. Journal of Chemical Physics, 2010, 133, 1243	1 13 .	123
113	Fragmentation Energetics of the Phenol $\langle \sup + \langle \sup \rangle \hat{A} \cdot \hat{A} \cdot \hat{A} \cdot A \cdot \langle \sup \rangle 3 \langle \sup \rangle$ Cation Cluster. Journal of Physical Chemistry A, 2010, 114, 11139-11143.	1.1	17
114	Spectroscopic Studies of a Sensory Rhodopsin I Homologue from the Archaeon <i>Haloarcula vallismortis</i>). Biochemistry, 2010, 49, 1183-1190.	1.2	19
115	Evidence for Catechol Ring- Induced Conformational Restriction in Neurotransmitters. Journal of Physical Chemistry Letters, 2010, 1, 1130-1133.	2.1	39
116	Structural Evolution of (1-NpOH)nClusters Studied by R2PI and IR Dip Spectroscopiesâ€. Journal of Physical Chemistry A, 2010, 114, 11210-11215.	1.1	12
117	Excited-State Triple-Proton Transfer in 7-Azaindole(H ₂ 0) ₂ and Reaction Path Studied by Electronic Spectroscopy in the Gas Phase and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2010, 114, 11161-11166.	1.1	58
118	Development of a Non-Scanning Vibrational Sum-Frequency Generation Detected Infrared Super-Resolution Microscope and its Application to Biological Cells. Applied Spectroscopy, 2010, 64, 275-281.	1.2	33
119	Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope. Optics Express, 2010, 18, 13402.	1.7	16
120	Dual Emission Caused by Ring Inversion Isomerization of a 4-Methyl-2-pyridyl-pyrimidine Copper(I) Complex. Journal of the American Chemical Society, 2010, 132, 9579-9581.	6.6	79
121	Tribute to Klaus Müller-Dethlefs. Journal of Physical Chemistry A, 2010, 114, 11027-11027.	1.1	O
122	Simultaneous Measurements of the Components of VOCs and PAHs in Diesel Exhaust Gas using a Laser lonization Method., 2009,,.		0
123	Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method. SAE International Journal of Engines, 2009, 2, 226-234.	0.4	4
124	Functional imaging of a single cell: far-field infrared super-resolution microscopy using autofluorescence detection. Proceedings of SPIE, 2009, , .	0.8	0
125	Plugging a Molecular Wire into Photosystemâ€l: Reconstitution of the Photoelectric Conversion System on a Gold Electrode. Angewandte Chemie - International Edition, 2009, 48, 1585-1587.	7.2	117
126	IR spectra of resorcinol+–Ar cluster cations (n= 1, 2): Evidence for photoionization-induced π → H isomerization. Chemical Physics Letters, 2009, 474, 7-12.	1.2	18

#	Article	IF	Citations
127	Characterization of a Signaling Complex Composed of Sensory Rhodopsin I and Its Cognate Transducer Protein from the Eubacterium <i>Salinibacter ruber</i> I). Biochemistry, 2009, 48, 10136-10145.	1.2	30
128	Effects of Chloride Ion Binding on the Photochemical Properties of Salinibacter Sensory Rhodopsin I. Journal of Molecular Biology, 2009, 392, 48-62.	2.0	37
129	Two-point-separation in a sub-micron nonscanning IR super-resolution microscope based on transient fluorescence detected IR spectroscopy. Optics Express, 2009, 17, 12013.	1.7	8
130	Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration. Physical Chemistry Chemical Physics, 2009, 11, 6098.	1.3	41
131	In Situ, Fast-response, Molecular-selective Methods for Measuring Emission Factors of Volatile Organic Compounds (VOCs) into the Atmosphere. Chemistry Letters, 2009, 38, 74-75.	0.7	4
132	Infrared Super-Resolution Imaging of a Single A549 Cell by Fluorescence Detection. Nippon Laser Igakkaishi, 2009, 30, 427-434.	0.0	0
133	Compact fluorescence depletion microscope system using an integrated optical element. Optics Communications, 2008, 281, 1850-1854.	1.0	7
134	The most stable conformer of benzyl alcohol. Chemical Physics Letters, 2008, 466, 21-26.	1.2	22
135	High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices. Optics Letters, 2008, 33, 1699.	1.7	42
136	Synthesis of Pd complexes directly linked to the light-absorbing [(bpy)3Ru]2+ unit and their photochemical reactions toward styrenes. Dalton Transactions, 2008, , 6709.	1.6	28
137	Vibrational Signature of the Conformers in Tyramine Studied by IR Dip and Dispersed Fluorescence Spectroscopies. Journal of Physical Chemistry A, 2008, 112, 13463-13469.	1.1	27
138	Cell imaging by transient fluorescence detected infrared microscopy. Proceedings of SPIE, 2008, , .	0.8	1
139	Electronic spectra of 7-azaindole/ammonia clusters and their photochemical reactivity. Journal of Chemical Physics, 2008, 129, 104311.	1.2	33
140	Development of High Sensitive On-Line Laser Ionization Mass Spectrometer for Environmental Hazardous Organic Compounds. Bunseki Kagaku, 2008, 57, 227-237.	0.1	2
141	Resonance-enhanced Multiphoton Ionization Spectroscopy of the S1–S0 Transition of Benzo[<i>e</i>)]pyrene for Real-time Analysis. Chemistry Letters, 2008, 37, 1280-1281.	0.7	1
142	Real-Time and Direct Measurement of Pollutants in Exhaust Gas Utilizing Supersonic Jet / Resonance Enhanced Multi-Photon Ionization. , 2008, , .		2
143	Hydrogen transfer dynamics in a photoexcited phenol/ammonia (1:3) cluster studied by picosecond time-resolved UV-IR-UV ion dip spectroscopy. Journal of Chemical Physics, 2007, 127, 234304.	1.2	39
144	IR signature of the photoionization-induced hydrophobicâ†'hydrophilic site switching in phenol-Arn clusters. Journal of Chemical Physics, 2007, 127, 114307.	1.2	58

#	Article	IF	CITATIONS
145	Investigation of image properties in super-resolution microscopy using two-color fluorescence dip spectroscopy., 2007,,.		O
146	Thermal Emission Monitoring of Naphthalene from Coals by Supersonic Jet Resonance Enhanced Multi-photon Ionization Time-of-Flight Mass Spectrometry Technique. Bunseki Kagaku, 2007, 56, 1133-1139.	0.1	2
147	Picosecond Time-resolved Infrared Imaging by a Nonscanning Two-color Infrared Super-resolution Microscope. Chemistry Letters, 2007, 36, 1380-1381.	0.7	8
148	Measurement of Contrast Transfer Function in Super-Resolution Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2007, 61, 6-10.	1.2	12
149	Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization. Optics Letters, 2007, 32, 2357.	1.7	48
150	High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO_3 optical parametric oscillator with a volume Bragg grating. Optics Letters, 2007, 32, 2996.	1.7	55
151	Vibrational OH-Stretching Overtone Spectroscopy of Jet-Cooled Resorcinol and Hydroquinone Rotamers. Journal of Physical Chemistry A, 2007, 111, 6028-6033.	1.1	14
152	Structure of the Jet-Cooled 1-Naphthol Dimer Studied by IR Dip Spectroscopy: Cooperation between the Ï€â^'Ï€ Interaction and the Hydrogen Bonding. Journal of Physical Chemistry A, 2007, 111, 1001-1005.	1,1	26
153	Hole-Burning Spectra of Phenolâ^Arn(n= 1, 2) Clusters: Resolution of the Isomer Issueâ€. Journal of Physical Chemistry A, 2007, 111, 7569-7575.	1.1	40
154	Bio-photosensor: Cyanobacterial photosystem I coupled with transistor via molecular wire. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 653-659.	0.5	110
155	Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy. Chemical Physics Letters, 2007, 439, 171-176.	1.2	19
156	IR spectra of phenol+–Krn cluster cations (n=1,2): Evidence for photoionization-induced π→H isomerization. Chemical Physics Letters, 2007, 443, 227-231.	1.2	34
157	On polarization effects in fluorescence depletion microscopy. Optics Communications, 2007, 272, 263-268.	1.0	37
158	Measurement System for Scanning Microscope Using Pulse Laser Light Source. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1344-1345.	0.1	0
159	Theoretical Study on the Structure and the Frequency of Isomers of the Naphthalene Dimer. Journal of Chemical Theory and Computation, 2006, 2, 1176-1183.	2.3	30
160	Excited state hydrogen transfer in fluorophenol·ammonia clusters studied by two-color REMPI spectroscopy. Physical Chemistry Chemical Physics, 2006, 8, 114-121.	1.3	36
161	Construction of super-resolution microscope based on cw laser light source. Review of Scientific Instruments, 2006, 77, 063112.	0.6	14
162	Vibrational Overtone Spectroscopy of Phenol and Its Deuterated Isotopomers. Journal of Physical Chemistry A, 2006, 110, 7345-7354.	1.1	38

#	Article	IF	Citations
163	52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device. Optics Letters, 2006, 31, 3149.	1.7	42
164	Development of a Supercritical Fluid Jet Technique for Supersonic Jet Laser Spectroscopy of Nonvolatile and Pyrolytic Molecules. Chemistry Letters, 2006, 35, 1044-1045.	0.7	3
165	Analysis of a fluorescence depletion process of Rhodamine 6G in a PMMA matrix induced by nano- and picosecond lasers. Chemical Physics Letters, 2006, 420, 410-415.	1.2	14
166	Highly efficient 1181nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulating Raman laser. Optics Communications, 2006, 260, 675-679.	1.0	14
167	Development of Real Time Monitoring Apparatus Based on Jet-REMPI Technique for the Determination of Hazardous Organic Compounds. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 262-267.	0.1	0
168	A New, Highly Sensitive Time-of-Flight Mass Spectrometer Consisting of a Flangeon-type Conical Ion Lens System and a Proto-type Daly Detector for Exhaust Gas Analysis Based on the Jet-REMPI Technique. Analytical Sciences, 2005, 21, 991-996.	0.8	32
169	Pulsed field ionisationâ€"ZEKE photoelectron spectrum of o-, m- and p-tolunitrile. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 215-221.	0.8	16
170	Real-Time Observation of Ionization-Induced Hydrophobicâ†'Hydrophilic Switching. Angewandte Chemie - International Edition, 2005, 44, 6149-6151.	7.2	72
171	Nanometer scale marker for fluorescent microscopy. Review of Scientific Instruments, 2005, 76, 073701.	0.6	16
172	Probing Stepwise Complexation in Phenylazomethine Dendrimers by a Metallo-Porphyrin Core. Journal of the American Chemical Society, 2005, 127, 13896-13905.	6.6	85
173	Two-Point Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy, Part I: Experimental Evaluation. Applied Spectroscopy, 2005, 59, 868-872.	1.2	5
174	Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead. Optics Express, 2005, 13, 10440.	1.7	77
175	Four-color hole burning spectra of phenol/ammonia 1:3 and 1:4 clusters. Journal of Chemical Physics, 2004, 120, 3215-3220.	1.2	25
176	Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator. Optical Engineering, 2004, 43, 1136.	0.5	25
177	Formation of nano-dots of phenylazomethine dendrimers with Rhodamine 6G on mica. Polymers for Advanced Technologies, 2004, 15, 159-163.	1.6	10
178	Vibrational energy relaxation of the 7-azaindole dimer in CCl4 solution studied by picosecond time-resolved transient fluorescence detected IR spectroscopy. Chemical Physics Letters, 2004, 396, 298-302.	1.2	21
179	Vibrational Overtone Spectroscopy of Jet-Cooled Aminophenols as a Probe for Rotational Isomers. Journal of Physical Chemistry A, 2004, 108, 4420-4427.	1.1	28
180	Generation of a doughnut-shaped beam using a spiral phase plate. Review of Scientific Instruments, 2004, 75, 5131-5135.	0.6	62

#	Article	IF	Citations
181	Two-Point-Separation in Far-Field Super-Resolution Fluorescence Microscopy Based on Two-Color Fluorescence Dip Spectroscopy. Hyomen Kagaku, 2004, 25, 466-472.	0.0	O
182	Two-color far-field super-resolution microscope using a doughnut beam. Chemical Physics Letters, 2003, 371, 634-639.	1.2	41
183	Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chemical Physics Letters, 2003, 372, 773-778.	1.2	30
184	Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. Optics Communications, 2003, 228, 279-283.	1.0	16
185	Predicted Spatial Resolution of Super-Resolving Fluorescence Microscopy Using Two-Color Fluorescence Dip Spectroscopy. Applied Spectroscopy, 2003, 57, 1312-1316.	1.2	19
186	Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Optics Express, 2003, 11, 3271.	1.7	80
187	S1–S0Electronic spectrum of jet-cooled m-aminophenol. Physical Chemistry Chemical Physics, 2003, 5, 5044-5050.	1.3	22
188	Pulsed field ionization-ZEKE spectroscopy of 4-aminobenzonitrile–H2O. Hydrogen-bonding interaction in the amino site. Physical Chemistry Chemical Physics, 2003, 5, 1775-1779.	1.3	14
189	Photochemistry of phenol–(NH3)n clusters: Solvent effect on a radical cleavage of an OH bond in an electronically excited state and intracluster reactions in the product NH4(NH3)nâ~1 (n⩽5). Journal of Chemical Physics, 2003, 119, 5149-5158.	1.2	46
190	Construction of a Picosecond Time-Resolved IR Dip Spectrometer for Studying Structures and Dynamics of Solvated Clusters. Bulletin of the Chemical Society of Japan, 2003, 76, 509-514.	2.0	7
191	Super-resolution Fluorescence Microscopy in Nano-meter Scale Region Using Two-color Laser Beams. Hyomen Kagaku, 2003, 24, 392-399.	0.0	0
192	Hydrogen transfer in photo-excited phenol/ammonia clusters by UVâ€"IRâ€"UV ion dip spectroscopy and ab initio molecular orbital calculations. II. Vibrational transitions. Journal of Chemical Physics, 2002, 117, 7083-7093.	1.2	47
193	Hydrogen transfer in photoexcited phenol/ammonia clusters by UV–IR–UV ion dip spectroscopy and ab initio molecular orbital calculations. I. Electronic transitions. Journal of Chemical Physics, 2002, 117, 7077-7082.	1.2	65
194	OH- and CH-Stretching Overtone Spectra of Catechol. Journal of Physical Chemistry A, 2002, 106, 258-266.	1.1	72
195	The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes: Comparing intermolecular vibrations in rotational isomers. Physical Chemistry Chemical Physics, 2002, 4, 2534-2538.	1.3	30
196	IR-dip and IR–UV hole-burning spectra of jet-cooled 4-aminobenzonitrile–(H2O)1. Observation of Ï€-type and Īƒ-type hydrogen-bonded conformers in the CN site. Chemical Physics, 2002, 283, 209-219.	0.9	31
197	Picosecond time-resolved nonresonant ionization detected IR spectroscopy on 7-azaindole dimer. European Physical Journal D, 2002, 20, 399-402.	0.6	18
198	Pulsed field ionization zero kinetic energy photoelectron study on methylanisole molecules in a supersonic jet. Physical Chemistry Chemical Physics, 2001, 3, 4889-4897.	1.3	14

#	Article	IF	Citations
199	Structure of 1-Naphthol/Alcohol Clusters Studied by IR Dip Spectroscopy and ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry A, 2001, 105, 10045-10053.	1.1	34
200	Structures of Carbazoleâ^'(H2O)n (n = $1a^{3}$) Clusters Studied by IR Dip Spectroscopy and a Quantum Chemical Calculation. Journal of Physical Chemistry A, 2001, 105, 8651-8657.	1.1	15
201	Structure of Hydrogen-Bonded Clusters of 7-Azaindole Studied by IR Dip Spectroscopy and ab Initio Molecular Orbital Calculation. Journal of Physical Chemistry A, 2001, 105, 9366-9374.	1.1	76
202	Electronic and infrared spectra of jet-cooled 4-aminobenzonitrile-H2O. Change of NH2 from proton acceptor to proton donor by CN substitution. Chemical Physics Letters, 2001, 341, 70-76.	1.2	29
203	Picosecond time-resolved infrared spectra of photo-excited phenol–(NH3)3 cluster. Chemical Physics Letters, 2001, 347, 87-92.	1.2	49
204	Structural characterization of the acridine $\hat{a} \in \text{``(H2O)'}(n=1\hat{a} \in \text{``3')}$ clusters by fluorescence-detected infrared spectroscopy. Chemical Physics Letters, 2000, 317, 211-219.	1.2	12
205	Internal methyl group rotation in o-cresol studied by pulsed field ionization-ZEKE photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 13-20.	0.8	18
206	Butterfly vibration of the tetrafluorobenzene cation studied by pulsed field ionization-zero kinetic energy photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 241-245.	0.8	3
207	Infrared dip spectra of photochemical reaction products in a phenol/ammonia cluster: examination of intracluster hydrogen transfer. Chemical Physics Letters, 2000, 322, 27-32.	1.2	53
208	Pulsed field ionization-ZEKE spectroscopy of cresoles and their aqueous complexes: Internal rotation of methyl group and intermolecular vibrations. Faraday Discussions, 2000, 115, 229-243.	1.6	17
209	Structure and Dynamics of 9(10H)-Acridone and Its Hydrated Clusters. II. Structural Characterization of Hydrogen-Bonding Networks. Journal of Physical Chemistry A, 2000, 104, 8649-8659.	1.1	10
210	Theoretical studies of internal methyl rotations in m-xylene: comparison of Franckâ€"Condon factors with the experimental spectra. Computational and Theoretical Chemistry, 1999, 461-462, 79-90.	1.5	6
211	Decoherence of the Laser Field in Energy Steady-State Operation. Journal of the Physical Society of Japan, 1999, 68, 3819-3825.	0.7	0
212	Nonresonant ionization detected IR spectrum of jet-cooled phenol. Ionization mechanism and its application to overtone spectroscopy. Chemical Physics Letters, 1998, 283, 243-250.	1.2	58
213	Structure of 1-Naphtholâ^'Water Clusters Studied by IR Dip Spectroscopy and Ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry A, 1998, 102, 6227-6233.	1.1	59
214	Overtone spectroscopy of jet-cooled phenol studied by nonresonant ionization detected IR spectroscopy., 1998,,.		1
215	Nonresonant ionization detected IR spectroscopy for the vibrational study in a supersonic jet. Chemical Physics Letters, 1996, 252, 287-293.	1.2	78
216	Internal rotation of methyl group ino―andmâ€ŧoluidine cations as studied by pulsed field ionization–zero kinetic energy spectroscopy. Journal of Chemical Physics, 1996, 105, 10201-10209.	1.2	28

#	Article	IF	CITATIONS
217	Internal Rotation of the Methyl Group in Cations of Toluene Derivatives. Journal of the Chinese Chemical Society, 1995, 42, 335-341.	0.8	9
218	Overtone spectroscopy in nitrous oxide. Journal of Chemical Physics, 1995, 103, 5931-5938.	1.2	61
219	IR-UV Double Resonance Spectrum of Acetylene Below and Above the Predissociation Threshold. Laser Chemistry, 1994, 14, 161-182.	0.5	10
220	Electronic spectra of o-, m- and p-tolunitrileâ€"substituent effect on internal rotation of the methyl group. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 1421-1433.	0.1	49
221	OH stretching vibrations of phenol—(H2O)n (n=1–3) complexes observed by IR-UV double-resonance spectroscopy. Chemical Physics Letters, 1993, 215, 347-352.	1.2	309
222	Internal rotation of the methyl group in o-, m- and p-fluorotoluene and their ions as studied by supersonic jet spectroscopies. Journal of Molecular Structure, 1993, 292, 9-16.	1.8	13
223	Internal rotation of the methyl group in fluorotoluene cations as studied by pulsed field ionizationâ€zero kinetic energy spectroscopy. Journal of Chemical Physics, 1993, 99, 3205-3217.	1.2	74
224	Electronic spectra of o-, m-, and p-difluorobenzene cations: striking similarity in vibronic coupling between the neutral molecule and its cation. The Journal of Physical Chemistry, 1992, 96, 99-104.	2.9	12
225	Twoâ€color double resonance spectroscopy viaÃ 1Austate of acetylene: 3pRydberg state and its Renner–Teller effect. Journal of Chemical Physics, 1992, 96, 6486-6494.	1.2	35
226	Pulsed-field-ionization spectroscopy for the study of molecular cations. Chemical Physics Letters, 1992, 189, 592-597.	1.2	39
227	Theoretical and experimental study on the profile of pumpâ€"probe time-resolved intensity correlation spectroscopy with incoherent light beams. Chemical Physics Letters, 1992, 197, 405-412.	1.2	3
228	Thermal lensing and photoacoustic spectra of gaseous acetylene by pulsed tunable infrared laser. Canadian Journal of Chemistry, 1991, 69, 1656-1658.	0.6	3
229	One-photon and Two-photon lonization Threshold Spectra of Jet-cooled 1,4-Difluorobenzene. Chemistry Letters, 1991, 20, 933-936.	0.7	1
230	Electronic spectra of fluorobenzene cations as studied by mass-selected ion dip spectroscopy. Journal of Molecular Structure, 1991, 249, 55-68.	1.8	3
231	Vibronic coupling in S1 of o- and m-difluorobenzene. Chemical Physics Letters, 1991, 183, 107-112.	1.2	16
232	Electronic spectra of p-difluorobenzene cation by mass-selected ion dip spectroscopy in a supersonic jet. Chemical Physics Letters, 1990, 168, 173-180.	1.2	7
233	Direct observation of second excited 1,3 (n,Ï€*) states of pyrazine by UVâ€"IR double resonance dip spectroscopy. Chemical Physics Letters, 1990, 171, 341-346.	1.2	43
234	Predissociation of the acetylene Alfâ \in %1Au state and its mechanism. Journal of Chemical Physics, 1990, 92, 959-968.	1.2	49

#	Article	IF	Citations
235	Electronic spectra of isolated cations in supersonic jets by massâ€selected ionâ€dip spectroscopy. Cations of benzene, pâ€difluorobenzene, and 1,3,5â€trifluorobenzene. Journal of Chemical Physics, 1989, 90, 6965-6976.	1.2	26
236	Predissociation of acetylene in $\tilde{A}f$ 1Au state. Chemical Physics Letters, 1988, 150, 380-385.	1.2	42
237	Keto-enol tautomer of uracil and thymine. The Journal of Physical Chemistry, 1988, 92, 1760-1765.	2.9	107
238	Jahn-Teller splitting induced by penetration of the 4p-Rydberg electron in 1,4-diazabicyclo[2.2.2]octane. The Journal of Physical Chemistry, 1988, 92, 2398-2400.	2.9	6
239	Selection rule and efficiency for autoionization of diazabicyclooctane as studied by two-color double-resonance spectroscopy. The Journal of Physical Chemistry, 1987, 91, 6507-6510.	2.9	19
240	Highly excited Rydberg states of pyrazine and their autoionization. The Journal of Physical Chemistry, 1987, 91, 2268-2273.	2.9	40
241	Two-color fluorescence dip and ion dip spectra of jet-cooled benzene. Chemical Physics Letters, 1987, 140, 427-433.	1.2	18
242	Two-color fluorescence DIP and MPI spectra of jet-cooled pyrazine. Chemical Physics Letters, 1987, 135, 407-412.	1.2	17
243	Electronic spectra of 1,2,4,5-tetrafluorobenzene in a supersonic jet: butterfly tunneling in the excited state. The Journal of Physical Chemistry, 1986, 90, 3948-3952.	2.9	48
244	Two-color multiphoton ionization spectra of jet-cooled p-difluorobenzene - s and d Rydberg states. Chemical Physics Letters, 1986, 127, 297-302.	1.2	22
245	Electronic spectra of uracil in a supersonic jet. Chemical Physics Letters, 1986, 126, 583-587.	1.2	85
246	Sensitized phosphorescence excitation spectra of complexes of glyoxal, pyrazine, and phenol. Great enhancement of phosphorescence yield by complexation. The Journal of Physical Chemistry, 1986, 90, 2370-2374.	2.9	27
247	Rydberg states (n = $4\hat{a}$ \in "29) of azabicyclo [2.2.2] octane as studied by two-color fluorescence DIP and multiphoton ionization spectroscopies. Chemical Physics, 1985, 99, 193-206.	0.9	24
248	Higher singlet and triplet n,ï€* states of glyoxal vapor. Chemical Physics Letters, 1985, 119, 17-21.	1.2	6
249	Rotational energy transfer in NO (A2 \hat{i} £+, v = 0 and 1) studied by two-color double-resonance spectroscopy. Chemical Physics, 1984, 84, 151-157.	0.9	41
250	Mode-dependent intramolecular vibrational redistribution in the S1 state of jet-cooled p-difluorobenzene. The Journal of Physical Chemistry, 1984, 88, 2937-2940.	2.9	31
251	Two-color multiphoton ionization and fluorescence dip spectra of diazabicyclo[2.2.2]octane in a supersonic free jet. Rydberg states (n = 5-39) and autoionization. The Journal of Physical Chemistry, 1984, 88, 4265-4271.	2.9	37
252	Two-color multiphoton ionization of diazabicyclooctane in a supersonic free jet. Chemical Physics Letters, 1983, 101, 578-582.	1.2	33

#	Article	IF	CITATIONS
253	Electronic spectra of jet-cooled azulene. Chemical Physics, 1983, 77, 191-200.	0.9	63
254	High Rydberg states of nitric oxide studied by two-color multiphoton spectroscopy. The Journal of Physical Chemistry, 1983, 87, 4773-4776.	2.9	48
255	Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method. , 0, , .		1