
Yang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507183/publications.pdf Version: 2024-02-01

VANC FAN

#	Article	IF	CITATIONS
1	Synthesis, crystal structure, and photocatalytic property of heterometallic calcium‒titanium oxo cluster with high aqueous stability. Transition Metal Chemistry, 2022, 47, 47-52.	0.7	3
2	Lanthanide‒containing titanium-oxo clusters with high aqueous stability for photocatalytic application. Journal of Molecular Structure, 2022, 1263, 133169.	1.8	0
3	Size modulation of MIL-125 nanocrystals to promote the catalytic performance towards oxidative desulfurization. Dalton Transactions, 2021, 50, 6506-6511.	1.6	14
4	8-Hydroxyquinoline functionalized titanium-oxo clusters for visible-light-driven photocatalytic oxidative desulfurization. Inorganic Chemistry Communication, 2021, 130, 108681.	1.8	3
5	Shape-controlled synthesis of the metal–organic framework MIL-125 towards a highly enhanced catalytic performance for the oxidative desulfurization of 4,6-dimethyldibenzothiophene. Dalton Transactions, 2020, 49, 10052-10057.	1.6	27
6	Template Thermolysis to Create a Carbon Dots-Embedded Mesoporous Titanium-Oxo Sulfate Framework for Visible-Light Photocatalytic Applications. Inorganic Chemistry, 2020, 59, 2062-2069.	1.9	33
7	Synthesis of titanium-oxo macrocyles and their catalytic properties for oxidative desulfurization. Dalton Transactions, 2019, 48, 14044-14048.	1.6	16
8	Structures, Photoelectrochemical and Photocatalytic Properties of Phosphite-Stabilized Titanium-Oxo Clusters Functionalized with Ferrocenecarboxylate Ligands. Journal of Cluster Science, 2019, 30, 1519-1524.	1.7	5
9	4-Chlorosalicylate-stabilized titanium-oxo clusters with structures mediated by tetrazole and their photophysical properties. Polyhedron, 2019, 157, 177-182.	1.0	9
10	Long-distance electronic coupling in diferrocenyl compounds with cross-conjugated germinal -diethynylethene bridges. Journal of Organometallic Chemistry, 2018, 859, 99-105.	0.8	6
11	Syntheses, structures and photoelectrochemical properties of phosphite-stabilized titanium-oxo clusters containing 2,2′-biphenolato ligands. Inorganic Chemistry Communication, 2018, 97, 176-179.	1.8	6
12	Modulating the band gap and photoelectrochemical activity of dicarboxylate-stabilized titanium-oxo clusters. Inorganica Chimica Acta, 2018, 482, 16-22.	1.2	6
13	A photoactive {Ti16} metal–organic capsule: structural, photoelectrochemical and photocatalytic properties. New Journal of Chemistry, 2018, 42, 14079-14082.	1.4	9
14	Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions. Dalton Transactions, 2018, 47, 8158-8163.	1.6	37
15	A ferrocenecarboxylate-functionalized titanium-oxo-cluster: the ferrocene wheel as a sensitizer for photocurrent response. Dalton Transactions, 2017, 46, 8057-8064.	1.6	44
16	Diferrocenes Bridged by a Geminal Diethynylethene Scaffold with Varying Pendant Substituents: Electronic Interactions in Cross-Conjugated System. Organometallics, 2017, 36, 4278-4286.	1.1	17
17	Phosphonate-Stabilized Titanium-Oxo Clusters with Ferrocene Photosensitizer: Structures, Photophysical and Photoelectrochemical Properties, and DFT/TDDFT Calculations. Inorganic Chemistry, 2017, 56, 12775-12782.	1.9	45
18	A 4-dimethylaminobenzoate-functionalized Ti ₆ -oxo cluster with a narrow band gap and enhanced photoelectrochemical activity: a combined experimental and computational study. Dalton Transactions, 2017, 46, 12313-12319.	1.6	24

Yang Fan

#	Article	IF	CITATIONS
19	Three-dimensional highly branched Pd ₃ Cu alloy multipods as enhanced electrocatalysts for formic acid oxidation. RSC Advances, 2016, 6, 43980-43984.	1.7	24
20	Heterogeneous Palladiumâ€Catalyzed Hydrogenâ€Transfer Cyclization of Nitroacetophenones with Benzylamines: Access to Câ^'N Bonds. ChemCatChem, 2016, 8, 3565-3569.	1.8	22
21	A porous ternary PtPdCu alloy with a spherical network structure for electrocatalytic methanol oxidation. RSC Advances, 2016, 6, 83373-83379.	1.7	10
22	Electrochemical Determination of Glucose in Human Serum Utilizing a Novel Nanocomposite Composed of Copper Nanoparticles in a Hollow Carbon Shell. Analytical Letters, 2015, 48, 137-146.	1.0	6
23	Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst. Journal of Power Sources, 2015, 280, 30-38.	4.0	70
24	Three-dimensional hierarchical porous platinum–copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. Journal of Power Sources, 2015, 296, 282-289.	4.0	45
25	Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation. Electrochimica Acta, 2015, 163, 140-148.	2.6	74
26	Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. International Journal of Hydrogen Energy, 2015, 40, 6188-6196.	3.8	69
27	CeO2 Nanotubes Supported Pd Electrocatalysts for Formic Acid Oxidation. Electrocatalysis, 2015, 6, 255-262.	1.5	12
28	Synthesis of mesoporous CuO microspheres with core-in-hollow-shell structure and its application for non-enzymatic sensing of glucose. Journal of Applied Electrochemistry, 2015, 45, 131-138.	1.5	22
29	CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors. Ionics, 2015, 21, 185-190.	1.2	37
30	Hierarchical Macro-Mesoporous Ni(OH) ₂ for Nonenzymatic Electrochemical Sensing of Glucose. Journal of the Electrochemical Society, 2014, 161, B201-B206.	1.3	45
31	Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. Journal of Power Sources, 2014, 268, 584-590.	4.0	189
32	Light and acid dual-responsive organogel formation based on m-methyl red derivative. Organic and Biomolecular Chemistry, 2013, 11, 7931.	1.5	31
33	New cholesterol-based gelator with orotate unit. Supramolecular Chemistry, 2013, 25, 441-445.	1.5	6
34	Pt/TiO2â^'C with hetero interfaces as enhanced catalyst for methanol electrooxidation. Electrochimica Acta, 2013, 105, 157-161.	2.6	54
35	Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 101, 106-110.	2.5	50
36	Organogel of fluorescein-based derivative formation in the selected pH value. Supramolecular Chemistry, 2013, 25, 881-885.	1.5	3

Yang Fan

#	Article	IF	CITATIONS
37	SnO2 nanospheres supported Pd catalyst with enhanced performance for formic acid oxidation. Journal of Power Sources, 2012, 215, 48-52.	4.0	38
38	Auâ€TiO ₂ /Graphene Nanocomposite Film for Electrochemical Sensing of Hydrogen Peroxide and NADH. Electroanalysis, 2012, 24, 1334-1339.	1.5	47
39	Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation. Electrochimica Acta, 2012, 76, 475-479.	2.6	31
40	Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Mikrochimica Acta, 2011, 173, 241-247.	2.5	156
41	Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Mikrochimica Acta, 2011, 174, 289-294.	2.5	21
42	Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids and Surfaces B: Biointerfaces, 2011, 83, 78-82.	2.5	178
43	Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 2011, 85, 289-292.	2.5	218
44	TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochimica Acta, 2011, 56, 4685-4690.	2.6	182
45	Wirelike Dinuclear Ruthenium Complexes Connected by Bis(ethynyl)oligothiophene. Inorganic Chemistry, 2007, 46, 5651-5664.	1.9	81
46	Synthesis of nickel-doped titanium-oxo clusters with enhanced visible-light photocatalytic activity. Transition Metal Chemistry, 0, , .	0.7	0