## Matti A Javanainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507160/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.                                                                                                                       | 9.0  | 557       |
| 2  | Anomalous Diffusion of Phospholipids and Cholesterols in a Lipid Bilayer and its Origins. Physical Review Letters, 2012, 109, 188103.                                                                                                    | 2.9  | 257       |
| 3  | Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena<br>in a Living Substance. Chemical Reviews, 2019, 119, 5607-5774.                                                                       | 23.0 | 209       |
| 4  | Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday<br>Discussions, 2013, 161, 397-417.                                                                                                            | 1.6  | 170       |
| 5  | Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11923-11928. | 3.3  | 168       |
| 6  | Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of<br>Phospholipids and Proteins. Physical Review X, 2016, 6, .                                                                                | 2.8  | 152       |
| 7  | Excessive aggregation of membrane proteins in the Martini model. PLoS ONE, 2017, 12, e0187936.                                                                                                                                           | 1.1  | 147       |
| 8  | Mechanism of allosteric regulation of $\hat{l}^22$ -adrenergic receptor by cholesterol. ELife, 2016, 5, .                                                                                                                                | 2.8  | 115       |
| 9  | Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at<br>Different Ambient Conditions. Journal of Physical Chemistry B, 2015, 119, 15075-15088.                                                | 1.2  | 109       |
| 10 | Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine<br>D2 receptors. Scientific Reports, 2016, 6, 19839.                                                                                    | 1.6  | 89        |
| 11 | Nanoscale Membrane Domain Formation Driven by Cholesterol. Scientific Reports, 2017, 7, 1143.                                                                                                                                            | 1.6  | 83        |
| 12 | Molecular electrometer and binding of cations to phospholipid bilayers. Physical Chemistry Chemical Physics, 2016, 18, 32560-32569.                                                                                                      | 1.3  | 78        |
| 13 | Mechanism for translocation of fluoroquinolones across lipid membranes. Biochimica Et Biophysica<br>Acta - Biomembranes, 2012, 1818, 2563-2571.                                                                                          | 1.4  | 76        |
| 14 | Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for<br>Spontaneous Permeation to Cells Revealed by Atomistic Simulations. Journal of Physical Chemistry C,<br>2014, 118, 11131-11141.     | 1.5  | 69        |
| 15 | Diffusion of Integral Membrane Proteins in Protein-Rich Membranes. Journal of Physical Chemistry<br>Letters, 2017, 8, 4308-4313.                                                                                                         | 2.1  | 65        |
| 16 | A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. Journal of Chemical Physics, 2020, 153, 050901.                                                                        | 1.2  | 63        |
| 17 | Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir, 2018, 34, 2565-2572.                                                                                                                               | 1.6  | 53        |
| 18 | Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell<br>Membranes. PLoS ONE, 2014, 9, e103743.                                                                                                  | 1.1  | 50        |

Matti A Javanainen

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Do Lipids Retard the Evaporation of the Tear Fluid?. , 2012, 53, 6442.                                                                                                                                                  |     | 49        |
| 20 | Experimental determination and computational interpretation of biophysical properties of lipid<br>bilayers enriched by cholesteryl hemisuccinate. Biochimica Et Biophysica Acta - Biomembranes, 2015,<br>1848, 422-432. | 1.4 | 45        |
| 21 | How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?.<br>Journal of Molecular Modeling, 2014, 20, 2121.                                                                        | 0.8 | 44        |
| 22 | Two cations, two mechanisms: interactions of sodium and calcium with zwitterionic lipid membranes.<br>Chemical Communications, 2017, 53, 5380-5383.                                                                     | 2.2 | 44        |
| 23 | Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. Journal of Physical<br>Chemistry B, 2019, 123, 9066-9079.                                                                                  | 1.2 | 43        |
| 24 | Free Volume Theory Applied to Lateral Diffusion in Langmuir Monolayers: Atomistic Simulations for a<br>Protein-Free Model of Lung Surfactant. Langmuir, 2010, 26, 15436-15444.                                          | 1.6 | 42        |
| 25 | Universal Method for Embedding Proteins into Complex Lipid Bilayers for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2577-2582.                                                | 2.3 | 41        |
| 26 | The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress, 2017, 1, 90-106.                                                                                                                 | 1.4 | 37        |
| 27 | Efficient preparation and analysis of membrane and membrane protein systems. Biochimica Et<br>Biophysica Acta - Biomembranes, 2016, 1858, 2468-2482.                                                                    | 1.4 | 33        |
| 28 | How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG<br>linkers as a rational alternative. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2436-2445.             | 1.4 | 31        |
| 29 | Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant<br>Protein B Complex. Journal of Molecular Biology, 2020, 432, 3251-3268.                                              | 2.0 | 29        |
| 30 | Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations.<br>Journal of Physical Chemistry B, 2021, 125, 9537-9546.                                                                 | 1.2 | 28        |
| 31 | Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. Journal of Biological Chemistry, 2017, 292, 14438-14455.                                                    | 1.6 | 25        |
| 32 | Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Computational Biology, 2019, 15, e1007033.                                                                      | 1.5 | 25        |
| 33 | Rapid diffusion of cholesterol along polyunsaturated membranes <i>via</i> deep dives. Physical Chemistry Chemical Physics, 2019, 21, 11660-11669.                                                                       | 1.3 | 21        |
| 34 | Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. Journal of<br>Lipid Research, 2015, 56, 1206-1221.                                                                               | 2.0 | 20        |
| 35 | Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation.<br>Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 870-878.                                                      | 1.4 | 20        |
| 36 | On Atomistic Models for Molecular Oxygen. Journal of Physical Chemistry B, 2017, 121, 518-528.                                                                                                                          | 1.2 | 19        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>27980-27988.                                               | 3.3 | 19        |
| 38 | Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension.<br>Journal of Chemical Theory and Computation, 2022, 18, 1862-1869.                                                                                     | 2.3 | 19        |
| 39 | Quantitative Assessment of Methods Used To Obtain Rate Constants from Molecular Dynamics<br>Simulations—Translocation of Cholesterol across Lipid Bilayers. Journal of Chemical Theory and<br>Computation, 2018, 14, 3840-3848.                      | 2.3 | 18        |
| 40 | Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level. Frontiers in Cell and Developmental Biology, 2020, 8, 581016.                                                              | 1.8 | 18        |
| 41 | How Anacetrapib Inhibits the Activity of the Cholesteryl Ester Transfer Protein? Perspective through Atomistic Simulations. PLoS Computational Biology, 2014, 10, e1003987.                                                                          | 1.5 | 17        |
| 42 | Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with<br>Dry Eye Syndrome. Journal of Physical Chemistry Letters, 2019, 10, 3893-3898.                                                                | 2.1 | 17        |
| 43 | How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure<br>Is Heavily Engineered: β <sub>2</sub> -Adrenergic Receptor in the Spotlight. Journal of Chemical Theory<br>and Computation, 2015, 11, 3432-3445. | 2.3 | 16        |
| 44 | Inverse Conformational Selection in Lipid–Protein Binding. Journal of the American Chemical Society, 2021, 143, 13701-13709.                                                                                                                         | 6.6 | 16        |
| 45 | The Two Faces of the Liquid Ordered Phase. Journal of Physical Chemistry Letters, 2022, 13, 1307-1313.                                                                                                                                               | 2.1 | 14        |
| 46 | The Devil Is in the Details: What Do We Really Track in Single-Particle Tracking Experiments of Diffusion in Biological Membranes?. Journal of Physical Chemistry Letters, 2019, 10, 1005-1011.                                                      | 2.1 | 13        |
| 47 | Rotational Diffusion of Membrane Proteins in Crowded Membranes. Journal of Physical Chemistry B,<br>2020, 124, 2994-3001.                                                                                                                            | 1.2 | 13        |
| 48 | Structural Effects of Cation Binding to DPPC Monolayers. Langmuir, 2020, 36, 15258-15269.                                                                                                                                                            | 1.6 | 8         |
| 49 | Anisotropic diffusion of membrane proteins at experimental timescales. Journal of Chemical Physics, 2021, 155, 015102.                                                                                                                               | 1.2 | 4         |
| 50 | Flip-Flops of Lipids in the Absence of Atp: Role of Membrane Proteins. Biophysical Journal, 2014, 106,<br>705a.                                                                                                                                      | 0.2 | 1         |
| 51 | What Happens for Sterol Dynamics When Cholesterol is Enzymatically Oxidized?. Biophysical Journal, 2014, 106, 704a.                                                                                                                                  | 0.2 | Ο         |
| 52 | Characterisation of Coexisting Liquid Phases in Mixtures of Dipalmitoylphosphatidylcholine and<br>Cholesterol. Biophysical Journal, 2014, 106, 709a-710a.                                                                                            | 0.2 | 0         |
| 53 | Cell Membrane Composition Affects GPCR Aggregation. Biophysical Journal, 2014, 106, 517a-518a.                                                                                                                                                       | 0.2 | Ο         |
| 54 | Open Collaboration that uses NMR Data to Judge the Correctness of Phospholipid Glycerol and Head<br>Group Structures in Molecular Dynamics Simulations. Biophysical Journal, 2015, 108, 411a.                                                        | 0.2 | 0         |

Matti A Javanainen

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Protocol to Avoid Possible Artifacts in Atomistic Simulation of GPCR Proteins whose Crystal<br>Structure is Heavily Engineered. Biophysical Journal, 2016, 110, 59a. | 0.2 | Ο         |
| 56 | The Effect of Membrane Polyunsaturated Fatty Acids on Receptor Partitioning to Ordered Domains.<br>Biophysical Journal, 2017, 112, 230a-231a.                        | 0.2 | 0         |
| 57 | The Role of Hydrophobic Mismatch on Transmembrane Helix Dimerization in Living Cells. Biophysical<br>Journal, 2019, 116, 90a.                                        | 0.2 | Ο         |
| 58 | Distinct Interactions of Sodium and Calcium Cations and Neutral Phospholipid Membranes and How to Simulate Them. Biophysical Journal, 2019, 116, 90a-91a.            | 0.2 | 0         |
| 59 | Benefits of the Electronic Continuum Correction in Bio-Force Fields. Biophysical Journal, 2020, 118, 558a.                                                           | 0.2 | 0         |