Kylie R Catchpole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507066/publications.pdf

Version: 2024-02-01

26630 22832 13,168 158 56 112 citations h-index g-index papers 160 160 160 12424 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
2	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7
3	Mixed-dimensional organic–inorganic metal halide perovskite (OIMHP) based gas sensors with superior stability for NO ₂ detection. Materials Advances, 2022, 3, 1263-1271.	5.4	12
4	Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts. Sustainable Energy and Fuels, 2022, 6, 349-360.	4.9	3
5	Unconventional direct synthesis of Ni ₃ N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy and Environmental Science, 2022, 15, 185-195.	30.8	44
6	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
7	Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
8	Recent Advances in Materials Design Using Atomic Layer Deposition for Energy Applications. Advanced Functional Materials, 2022, 32, .	14.9	34
9	Investigation of the mechanisms of plasmon-mediated photocatalysis: synergistic contribution of near-field and charge transfer effects. Journal of Materials Chemistry C, 2022, 10, 7511-7524.	5.5	13
10	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	5.8	22
11	27.6% Perovskite/câ€Si Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy Materials, 2022, 12, .	19.5	22
12	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	19.5	93
13	A bottomâ€up cost analysis of silicon–perovskite tandem photovoltaics. Progress in Photovoltaics: Research and Applications, 2021, 29, 401-413.	8.1	35
14	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5.8	6
15	Defect engineering for creating and enhancing bulk photovoltaic effect in centrosymmetric materials. Journal of Materials Chemistry A, 2021, 9, 13182-13191.	10.3	12
16	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
17	Earthâ€Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000071.	5.8	30
18	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	10.3	32

#	Article	IF	CITATIONS
19	Holeâ€Storage Enhanced aâ€Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie, 2021, 133, 12073-12079.	2.0	2
20	Holeâ€Storage Enhanced aâ€Si Photocathodes for Efficient Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 11966-11972.	13.8	29
21	High efficiency perovskite/silicon tandems for electricity and hydrogen. , 2021, , .		1
22	Contactless and Spatially Resolved Determination of Currentâ "Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5.8	7
23	Direct Solar Hydrogen Generation at 20% Efficiency Using Low ost Materials. Advanced Energy Materials, 2021, 11, 2101053.	19.5	35
24	Contactless and Spatially Resolved Determination of Currentâ°'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5.8	1
25	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
26	Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. IScience, 2021, 24, 102966.	4.1	93
27	Ultrathin HfO2 passivated silicon photocathodes for efficient alkaline water splitting. Applied Physics Letters, 2021, 119, .	3.3	5
28	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	19.5	66
29	High performance bulk photovoltaics in narrow-bandgap centrosymmetric ultrathin films. Materials Horizons, 2020, 7, 898-904.	12.2	6
30	Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130
31	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	19.5	87
32	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
33	Design and operando/in situ characterization of preciousâ€metalâ€free electrocatalysts for alkaline water splitting. , 2020, 2, 582-613.		105
34	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34
35	Solar Water Splitting: Over 17% Efficiency Standâ€Alone Solar Water Splitting Enabled by Perovskiteâ€ilicon Tandem Absorbers (Adv. Energy Mater. 28/2020). Advanced Energy Materials, 2020, 10, 2070122.	19.5	4
36	Over 17% Efficiency Standâ€Alone Solar Water Splitting Enabled by Perovskiteâ€Silicon Tandem Absorbers. Advanced Energy Materials, 2020, 10, 2000772.	19.5	58

#	Article	IF	CITATIONS
37	The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.	2.8	274
38	Efficient Passivation and Low Resistivity for p ⁺ -Si/TiO ₂ Contact by Atomic Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.	5.1	5
39	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0
40	Superior Selfâ€Charged and â€Powered Chemical Sensing with High Performance for NO ₂ Detection at Room Temperature. Advanced Optical Materials, 2020, 8, 1901863.	7.3	27
41	Reduction of iron–manganese oxide particles in a lab-scale packed-bed reactor for thermochemical energy storage. Chemical Engineering Science, 2020, 221, 115700.	3.8	19
42	High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	19.5	110
43	Effective thermal conductivity of a bed packed with granular iron–manganese oxide for thermochemical energy storage. Chemical Engineering Science, 2019, 207, 490-494.	3.8	14
44	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	4.6	81
45	Reduction kinetics for large spherical 2:1 iron–manganese oxide redox materials for thermochemical energy storage. Chemical Engineering Science, 2019, 201, 74-81.	3.8	22
46	Perovskite Solar Cells: Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells (Adv.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
47	Extracting optical bandgaps from luminescence images of perovskite solar cells. , 2019, , .		0
48	Light-activated inorganic CsPbBr ₂ I perovskite for room-temperature self-powered chemical sensing. Physical Chemistry Chemical Physics, 2019, 21, 24187-24193.	2.8	23
49	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	10.7	123
50	Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802790.	19.5	18
51	Superior Selfâ€Powered Roomâ€Temperature Chemical Sensing with Lightâ€Activated Inorganic Halides Perovskites. Small, 2018, 14, 1702571.	10.0	82
52	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	6.1	28
53	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
54	In situ recombination junction between p-Si and TiO ₂ enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.	10.3	122

#	Article	IF	CITATIONS
55	The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. Journal of Applied Physics, 2018, 124, .	2.5	110
56	Impact of Light on the Thermal Stability of Perovskite Solar Cells and Development of Stable Semi-transparent Cells. , 2018, , .		2
57	A Universal Doubleâ€Side Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	19.5	387
58	Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.	17.4	90
59	Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells, 2018, 188, 27-36.	6.2	43
60	Perovskite Photovoltaic Integrated CdS/TiO ₂ Photoanode for Unbiased Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Therfaces, 2018, 10, 23766-23773.	8.0	38
61	Understanding the impact of carrier mobility and mobile ions on perovskite cell performance. , 2018, , .		0
62	Improved Reproducibility for Perovskite Solar Cells with 1 cm ² Active Area by a Modified Two-Step Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5974-5981.	8.0	41
63	Inverted Hysteresis in CH ₃ NH ₃ Pbl ₃ Solar Cells: Role of Stoichiometry and Band Alignment. Journal of Physical Chemistry Letters, 2017, 8, 2672-2680.	4.6	71
64	Rubidium Multication Perovskite with Optimized Bandgap for Perovskiteâ€Silicon Tandem with over 26% Efficiency. Advanced Energy Materials, 2017, 7, 1700228.	19.5	443
65	Transparent Long-Pass Filter with Short-Wavelength Scattering Based on <i>Morpho</i> Butterfly Nanostructures. ACS Photonics, 2017, 4, 741-745.	6.6	13
66	Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 2017, 19, 3094-3103.	2.8	159
67	Diffuse reflectors for improving light management in solar cells: a review and outlook. Journal of Optics (United Kingdom), 2017, 19, 014001.	2.2	13
68	Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.	30.8	178
69	The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells. Journal of Physical Chemistry C, 2017, 121, 19642-19649.	3.1	101
70	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26859-26866.	8.0	114
71	Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using Luminescence Measurements. Energy Technology, 2017, 5, 1827-1835.	3.8	103
72	Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.	30.8	381

#	Article	IF	CITATIONS
73	Efficient Indiumâ€Doped TiO <i>_×</i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	19.5	167
74	Notice of Removal High efficiency perovskite/silicon tandem cells with low parasitic absorption. , 2017, , .		1
75	Highly Reflective Dielectric Back Reflector for Improved Efficiency of Tandem Thin-Film Solar Cells. International Journal of Photoenergy, 2016, 2016, 1-7.	2.5	8
76	Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics Express, 2016, 24, A1454.	3.4	76
77	Total absorption of visible light in ultrathin weakly absorbing semiconductor gratings. Optica, 2016, 3, 556.	9.3	42
78	A re-evaluation of transparent conductor requirements for thin-film solar cells. Journal of Materials Chemistry A, 2016, 4, 4490-4496.	10.3	42
79	Optical and electrical modelling for high efficiency perovskite/silicon tandem solar cells. , 2016, , .		1
80	Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calculated Efficiency. IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.	2.5	15
81	Evaporated and solution deposited planar Sb ₂ S ₃ solar cells: A comparison and its significance. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 108-113.	1.8	40
82	Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH ₃ NH ₃ Pol ₃ perovskite films. Physical Chemistry Chemical Physics, 2016, 18, 22557-22564.	2.8	36
83	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	2.6	11
84	Modelling of slow transient processes in organo-metal halide perovskites. , 2016, , .		0
85	Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340.	16.0	133
86	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004.	2.2	85
87	Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.	2.5	80
88	Total absorption in Structured Ultrathin Semiconductor Layers. , 2016, , .		0
89	Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH ₃ NH ₃ Pol ₃ Perovskite from Photoluminescence. Journal of Physical Chemistry Letters, 2015, 6, 767-772.	4.6	73
90	Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Optics Express, 2015, 23, A391.	3.4	33

#	Article	IF	CITATIONS
91	Metal Nanoparticle Arrays as Wavelength-Selective Rear Reflectors. , 2015, , .		O
92	Wavelength selective light trapping for tandem solar cells on silicon. , 2014, , .		0
93	Three-dimensional nanotub submicrometer diffraction gratings for solar cells. Applied Optics, 2014, 53, 6840.	1.8	2
94	Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Progress in Photovoltaics: Research and Applications, 2014, 22, 587-592.	8.1	14
95	Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency. IEEE Journal of Photovoltaics, 2014, 4, 208-214.	2.5	164
96	Optics and Light Trapping for Tandem Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2014, 4, 1380-1386.	2.5	114
97	High-resolution photocurrent imaging of light trapping by plasmonic nanoparticles on thin film Si solar cells. , 2014, , .		0
98	Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions. Journal of Applied Physics, 2013, 114, .	2.5	26
99	Effect of Nanoparticle Size Distribution on the Performance of Plasmonic Thin-Film Solar Cells: Monodisperse Versus Multidisperse Arrays. IEEE Journal of Photovoltaics, 2013, 3, 267-270.	2.5	17
100	Evaluating Plasmonic Light Trapping With Photoluminescence. IEEE Journal of Photovoltaics, 2013, 3, 1292-1297.	2.5	20
101	Plasmonic Near-Field Enhancement for Planar Ultra-Thin Photovoltaics. IEEE Photonics Journal, 2013, 5, 8400608-8400608.	2.0	18
102	Photoluminescence enhancement towards high efficiency plasmonic solar cells., 2013,,.		4
103	Designing Nano-loop antenna arrays for light-trapping in solar cells. , 2013, , .		5
104	Thin-film Inorganic Top Cells in Tandem with c-Si: Targeting 30% Efficiency. , 2013, , .		0
105	Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. Optics Express, 2012, 20, 13226.	3.4	21
106	The analytical basis for the resonances and anti-resonances of loop antennas and meta-material ring resonators. Journal of Applied Physics, 2012, 112, .	2.5	36
107	Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Applied Physics Letters, 2012, 101, 073905.	3.3	197
108	Nanophotonic light trapping in solar cells. Journal of Applied Physics, 2012, 112, .	2.5	243

#	Article	IF	CITATIONS
109	Plasmonic near-field enhancement for planar ultra-thin absorber solar cells., 2012,,.		O
110	Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells. Applied Physics Letters, 2012, 100, .	3.3	34
111	Optimal wavelength scale diffraction gratings for light trapping in solar cells. Journal of Optics (United Kingdom), 2012, 14, 024012.	2.2	74
112	Nanoimprinted Tio ₂ sol–gel passivating diffraction gratings for solar cell applications. Progress in Photovoltaics: Research and Applications, 2012, 20, 143-148.	8.1	37
113	Enhanced light trapping in solar cells using snow globe coating. Progress in Photovoltaics: Research and Applications, 2012, 20, 837-842.	8.1	18
114	Resonant nano-antennas for light trapping in plasmonic solar cells. Journal Physics D: Applied Physics, 2011, 44, 185101.	2.8	61
115	Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Optics Express, 2011, 19, A146.	3.4	65
116	Light trapping with plasmonic particles: beyond the dipole model. Optics Express, 2011, 19, 25230.	3.4	70
117	The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 2011, 109, .	2.5	125
118	Plasmonic Circuits: Manipulating Light on the Nanoscale. , 2011, , 17-56.		0
119	Comparing nanowire, multijunction, and single junction solar cells in the presence of light trapping. Journal of Applied Physics, 2011, 109, .	2.5	27
120	Analytical approach for design of blazed dielectric gratings for light trapping in solar cells. Journal Physics D: Applied Physics, 2011, 44, 055103.	2.8	11
121	Plasmonics and nanophotonics for photovoltaics. MRS Bulletin, 2011, 36, 461-467.	3.5	108
122	Plasmonic lightâ€trapping for Si solar cells using selfâ€assembled, Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18, 500-504.	8.1	114
123	Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Applied Physics Letters, 2010, 96, .	3.3	128
124	Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Applied Physics Letters, 2010, 96, .	3.3	153
125	Plasmons for enhancing solar cells. , 2010, , .		2
126	Localized surface plasmons for high efficiency solar cells. , 2010, , .		0

#	Article	lF	CITATIONS
127	Optical Properties of Nanostructures. , 2010, , 49-71.		O
128	Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 2009, 105, .	2.5	476
129	Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters, 2009, 95, .	3.3	214
130	Design principles for particle plasmon enhanced solar cells. Applied Physics Letters, 2008, 93, .	3.3	762
131	Plasmonic solar cells. Optics Express, 2008, 16, 21793.	3.4	1,411
132	Red-shifting the surface plasmon resonance of silver nanoparticles for light trapping in solar cells. Materials Research Society Symposia Proceedings, 2008, 1101, 1.	0.1	3
133	Photovoltaic effect in Si/SiO <inf>x</inf> heterostructures. , 2008, , .		0
134	Photovoltaic Plasmonics., 2008,,.		0
135	A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells. Journal of Applied Physics, 2007, 102, .	2.5	32
136	A conceptual model of light coupling by pillar diffraction gratings. Journal of Applied Physics, 2007, 101, 063105.	2.5	55
137	Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells. Advances in OptoElectronics, 2007, 2007, 1-4.	0.6	3
138	Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 2007, 101, 093105.	2.5	1,624
139	Absorption enhancement due to scattering by dipoles into silicon waveguides. Journal of Applied Physics, 2006, 100, 044504.	2.5	87
140	Enhanced emission from Si-based light-emitting diodes using surface plasmons. Applied Physics Letters, 2006, 88, 161102.	3.3	242
141	Surface plasmons for enhanced silicon light-emitting diodes and solar cells. Journal of Luminescence, 2006, 121, 315-318.	3.1	71
142	Nanostructures in photovoltaics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 3493-3503.	3.4	27
143	Enhancement of scattering and light-extraction by metal particles on silicon waveguides., 2005, 6037, 57.		1
144	Effects of dielectric overcoating on the absorption enhancement of SOI LEDs with metal island films. , 2005, , .		0

#	Article	IF	Citations
145	Silicon photoluminescence external quantum efficiency determined by combined thermal/photoluminescence measurements. Semiconductor Science and Technology, 2004, 19, 1411-1415.	2.0	1
146	High external quantum efficiency from double heterostructure InGaP/GaAs layers as selective emitters for thermophotonic systems. Semiconductor Science and Technology, 2004, 19, 1268-1272.	2.0	13
147	High external quantum efficiency of planar semiconductor structures. Semiconductor Science and Technology, 2004, 19, 1232-1235.	2.0	14
148	Thin semiconducting layers as active and passive emitters for thermophotonics and thermophotovoltaics. Solar Energy, 2004, 76, 251-254.	6.1	5
149	Modelling a monolithically integrated vertical junction cell in low and high injection. Progress in Photovoltaics: Research and Applications, 2003, 11, 113-124.	8.1	6
150	Modelling the PERC structure for industrial quality silicon. Solar Energy Materials and Solar Cells, 2002, 73, 189-202.	6.2	32
151	Thin semiconducting layers and nanostructures as active and passive emitters for thermophotonics and thermophotovoltaics. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 91-95.	2.7	10
152	A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar Energy Materials and Solar Cells, 2001, 68, 135-171.	6.2	101
153	A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates. Solar Energy Materials and Solar Cells, 2001, 68, 173-215.	6.2	115
154	Probing a doubly driven two-level atom. Journal of Optics B: Quantum and Semiclassical Optics, 1999, 1, 240-244.	1.4	20
155	Surface morphology of silicon layers grown on patterned silicon substrates by liquid-phase epitaxy. Journal of Crystal Growth, 1999, 204, 453-461.	1.5	1
156	The Epilift technique for Si solar cells. Applied Physics A: Materials Science and Processing, 1999, 69, 195-199.	2.3	23
157	Epitaxial lateral overgrowth of Si on (100)Si substrates by liquid-phase epitaxy. Journal of Crystal Growth, 1998, 186, 369-374.	1.5	23
158	Third generation photovoltaics., 0,,.		0