
Shigeto Sudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and production and consumption processes of N ₂ O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	123
2	Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agriculture, Ecosystems and Environment, 2011, 141, 359-372.	2.5	122
3	Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	119
4	Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agriculture, Ecosystems and Environment, 2008, 125, 9-20.	2.5	116
5	N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biology and Biochemistry, 2009, 41, 521-529.	4.2	107
6	Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems and Environment, 2018, 252, 148-158.	2.5	88
7	Nitrification, ammonia-oxidizing communities, and N2O and CH4 fluxes in an imperfectly drained agricultural field fertilized with coated urea with and without dicyandiamide. Biology and Fertility of Soils, 2013, 49, 213-223.	2.3	83
8	The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia. Nutrient Cycling in Agroecosystems, 2005, 71, 17-32.	1.1	74
9	Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmospheric Environment, 2014, 95, 36-44.	1.9	74
10	Reactivity study of alloy clusters made of aluminum and some transition metals with hydrogen. Chemical Physics Letters, 1989, 164, 427-432.	1.2	59
11	Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture, Ecosystems and Environment, 2017, 237, 109-120.	2.5	52
12	Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 2005, 71, 55-62.	1.1	46
13	Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil. PLoS ONE, 2018, 13, e0192235.	1.1	46
14	Combined emission of CH ₄ and N ₂ O from a paddy field was reduced by preceding upland crop cultivation. Soil Science and Plant Nutrition, 2011, 57, 167-178.	0.8	44
15	Continuous, Automated Nitrous Oxide Measurements from Paddy Soils Converted to Upland Crops. Soil Science Society of America Journal, 2005, 69, 1977-1986.	1.2	41
16	Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model. Biology and Fertility of Soils, 2014, 50, 879-889.	2.3	39
17	An Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils. Journal of Environmental Quality, 2007, 36, 1920-1925.	1.0	37
18	Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Science of the Total Environment, 2016, 547, 429-440.	3.9	36

Shigeto Sudo

#	Article	IF	CITATIONS
19	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 63, 231-238.	1.1	35
20	Development of a System for Simultaneous and Continuous Measurement of Carbon Dioxide, Methane and Nitrous Oxide Fluxes from Croplands Based on the Automated Closed Chamber Method. Soil Science and Plant Nutrition, 2005, 51, 557-564.	0.8	27
21	Forage rice varieties Fukuhibiki and Tachisuzuka emit larger CH ₄ than edible rice Haenuki. Soil Science and Plant Nutrition, 2018, 64, 77-83.	0.8	23
22	Temporal and Spatial Variations in N2O Emissions from a Chinese Cabbage Field as a Function of Type of Fertilizer and Application. Nutrient Cycling in Agroecosystems, 2006, 74, 147-155.	1.1	22
23	Assessment of crop residue and palm shell biochar incorporation on greenhouse gas emissions during the fallow and crop growing seasons of broccoli (Brassica oleracea var. italica). Soil and Tillage Research, 2020, 196, 104435.	2.6	21
24	Azolla cover significantly decreased CH ₄ but not N ₂ O emissions from flooding rice paddy to atmosphere. Soil Science and Plant Nutrition, 2018, 64, 68-76.	0.8	20
25	Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India. Agronomy, 2018, 8, 202.	1.3	19
26	Automated sampling system for long-term monitoring of nitrous oxide and methane fluxes from soils. Soil Science and Plant Nutrition, 2009, 55, 435-440.	0.8	17
27	Evaluation of uncertainties in N ₂ O and NO fluxes from agricultural soil using a hierarchical Bayesian model. Journal of Geophysical Research, 2012, 117, .	3.3	14
28	Differences in the Spatial Variability Among CO2, CH4, and N2O Gas Fluxes from an Urban Forest Soil in Japan. Ambio, 2015, 44, 55-66.	2.8	12
29	Influence of pruning waste biochar and oyster shell on N2O and CO2 emissions from Japanese pear orchard soil. Heliyon, 2018, 4, e00568.	1.4	12
30	Azolla incorporation and dual cropping influences CH ₄ and N ₂ O emissions from flooded paddy ecosystems. Soil Science and Plant Nutrition, 2020, 66, 152-162.	0.8	12
31	Returning Tea Pruning Residue and Its Biochar Had a Contrasting Effect on Soil N2O and CO2 Emissions from Tea Plantation Soil. Atmosphere, 2018, 9, 109.	1.0	11
32	Hydrogen and carbon isotopic measurements of methane from agricultural combustion: Implications for isotopic signatures of global biomass burning sources. Journal of Geophysical Research, 2006, 111,	3.3	9
33	Field Validation of the DNDC-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture (Switzerland), 2020, 10, 355.	1.4	9
34	Time-lagged induction of N2O emission and its trade-off with NO emission from a nitrogen fertilized Andisol. Soil Science and Plant Nutrition, 2007, 53, 362-372.	0.8	7
35	Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture (Switzerland), 2021, 11, 52.	1.4	7
36	Multi-site monitoring for \$\$hbox {N}_2hbox {O}\$\$ N 2 O emission factors of synthetic fertilizer in various soils with different redoximorphic features across Japan. Nutrient Cycling in Agroecosystems, 2015, 103, 87-99.	1.1	4

Shigeto Sudo

#	Article	IF	CITATIONS
37	Effects of controlled release N fertilizers and reduced application rate on nitrous oxide emissions from soybean fields converted from rice paddies. Soil Science and Plant Nutrition, 2021, 67, 716-726.	0.8	4
38	Annual and El Niño-Southern Oscillation variations in observations of in situ stratospheric ozone over Peninsular Malaysia. Journal of Geophysical Research, 2002, 107, ACH 12-1.	3.3	3
39	Influence of Azolla incorporation and/or dual cropping on CH ₄ and N ₂ O emission from a paddy field. Soil Science and Plant Nutrition, 2022, 68, 246-255.	0.8	2
40	Aerated Irrigation and Pruning Residue Biochar on N2O Emission, Yield and Ion Uptake of Komatsuna. Horticulturae, 2018, 4, 33.	1.2	1
41	Effects of a new compost-chemical fertilizer mixture on COâ,, and Nâ,,O production and plant growth in a Chernozem and an Andosol. Soil Science and Plant Nutrition, 0, , 1-8.	0.8	1