Amaya Azqueta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506974/publications.pdf

Version: 2024-02-01

66250 73587 6,761 122 44 79 citations h-index g-index papers 133 133 133 8863 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Vitro Genotoxicity Evaluation of an Antiseptic Formulation Containing Kaolin and Silver Nanoparticles. Nanomaterials, 2022, 12, 914.	1.9	5
2	Genotoxicity of Graphene-Based Materials. Nanomaterials, 2022, 12, 1795.	1.9	8
3	Do cytotoxicity and cell death cause false positive results in the in vitro comet assay?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 881, 503520.	0.9	20
4	DNA damage and DNA protection from digested raw and griddled green pepper (poly)phenols in human colorectal adenocarcinoma cells (HT-29). European Journal of Nutrition, 2021, 60, 677-689.	1.8	7
5	The enzyme-modified comet assay: Past, present and future. Food and Chemical Toxicology, 2021, 147, 111865.	1.8	46
6	The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutation Research - Reviews in Mutation Research, 2021, 787, 108371.	2.4	45
7	In Vitro Genotoxicity Assessment of Functional Ingredients: Betaine, Choline, and Taurine. Foods, 2021, 10, 339.	1.9	5
8	Salivary leucocytes as suitable biomatrix for the comet assay in human biomonitoring studies. Archives of Toxicology, 2021, 95, 2179-2187.	1.9	5
9	Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis, 2021, 36, 193-212.	1.0	20
10	2-Phenoxy-3-Trichloromethylquinoxalines Are Antiplasmodial Derivatives with Activity against the Apicoplast of Plasmodium falciparum. Pharmaceuticals, 2021, 14, 724.	1.7	5
11	Validation of the in vitro comet assay for DNA cross-links and altered bases detection. Archives of Toxicology, 2021, 95, 2825-2838.	1.9	17
12	In vitro genotoxicity assessment of functional ingredients: DHA, rutin and \hat{l}_{\pm} -tocopherol. Food and Chemical Toxicology, 2021, 153, 112237.	1.8	9
13	DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Scientific Reports, 2021, 11, 16793.	1.6	36
14	In vitro mutagenicity assessment of fried meat-based food from mass catering companies. Food and Chemical Toxicology, 2021, 156, 112494.	1.8	1
15	Antiplasmodial 2-thiophenoxy-3-trichloromethyl quinoxalines target the apicoplast of Plasmodium falciparum. European Journal of Medicinal Chemistry, 2021, 224, 113722.	2.6	4
16	Genotoxicity evaluation of fried meat: A comprehensive review. Food and Chemical Toxicology, 2020, 136, 110943.	1.8	9
17	Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutation Research - Reviews in Mutation Research, 2020, 783, 108288.	2.4	95
18	An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nature Protocols, 2020, 15, 3844-3878.	5.5	33

#	Article	IF	CITATIONS
19	Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T.Âb. brucei hit-compound with improved pharmacokinetic properties. European Journal of Medicinal Chemistry, 2020, 206, 112668.	2.6	11
20	Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nature Protocols, 2020, 15, 3817-3826.	5.5	189
21	Tellurides Bearing Sulfonamides as Novel Inhibitors of Leishmanial Carbonic Anhydrase with Potent Antileishmanial Activity. Journal of Medicinal Chemistry, 2020, 63, 4306-4314.	2.9	28
22	European Regulatory Framework and Safety Assessment of Food-Related Bioactive Compounds. Nutrients, 2020, 12, 613.	1.7	35
23	Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini-Reviews in Medicinal Chemistry, 2020, 20, 39-53.	1.1	15
24	Genotoxicity of Silver Nanoparticles. Nanomaterials, 2020, 10, 251.	1.9	64
25	The role of the enzyme-modified comet assay in in vivo studies. Toxicology Letters, 2020, 327, 58-68.	0.4	8
26	Potassium bromate as positive assay control for the Fpg-modified comet assay. Mutagenesis, 2020, 35, 341-348.	1.0	32
27	Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicology Letters, 2020, 330, 108-117.	0.4	16
28	Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorganic and Medicinal Chemistry, 2019, 27, 3902-3917.	1.4	17
29	Applying the comet assay to fresh vs frozen animal solid tissues: A technical approach. Food and Chemical Toxicology, 2019, 132, 110671.	1.8	8
30	The enzyme-modified comet assay: Enzyme incubation step in 2 vs 12-gels/slide systems. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 845, 402981.	0.9	14
31	Technical recommendations to perform the alkaline standard and enzyme-modified comet assay in human biomonitoring studies. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 843, 24-32.	0.9	58
32	DNA repair as a human biomonitoring tool: Comet assay approaches. Mutation Research - Reviews in Mutation Research, 2019, 781, 71-87.	2.4	40
33	Cytotoxic activity of fucoxanthin, alone and in combination with the cancer drugs imatinib and doxorubicin, in CML cell lines. Environmental Toxicology and Pharmacology, 2018, 59, 24-33.	2.0	25
34	Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis, 2018, 33, 25-30.	1.0	21
35	The comet assay applied to cells of the eye. Mutagenesis, 2018, 33, 21-24.	1.0	5
36	Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity?. Food and Chemical Toxicology, 2018, 116, 379-387.	1.8	11

#	Article	IF	CITATIONS
37	Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. Phytomedicine, 2018, 48, 84-93.	2.3	30
38	Second Generation of Mannich Base-Type Derivatives with <i>in Vivo</i> Activity against <i>Trypanosoma cruzi</i> Journal of Medicinal Chemistry, 2018, 61, 5643-5663.	2.9	32
39	In vitro evaluation of the genotoxicity of poly(anhydride) nanoparticles designed for oral drug delivery. International Journal of Pharmaceutics, 2017, 523, 418-426.	2.6	14
40	Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery. International Journal of Pharmaceutics, 2017, 517, 67-79.	2.6	33
41	Genotoxic evaluation of poly(anhydride) nanoparticles in the gastrointestinal tract of mice. International Journal of Pharmaceutics, 2017, 530, 187-194.	2.6	4
42	Biological Evaluation of Arylamine Mannich Base Derivatives with Potent In Vivo Activity as Potent Antichagasic Agents. Proceedings (mdpi), 2017, 1 , .	0.2	0
43	Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity. Frontiers in Molecular Biosciences, 2017, 4, 8.	1.6	7
44	Polyphenols and DNA Damage: A Mixed Blessing. Nutrients, 2016, 8, 785.	1.7	89
45	Purported Interactions of Amyloid-l² andÂGlucocorticoids in Cytotoxicity andÂGenotoxicity: Implications inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 1085-1094.	1.2	2
46	Toxicological Aspects of Polymer Nanoparticles. , 2016, , 521-550.		1
47	Is oxidative stress involved in OTA renal toxicity?. Toxicology Letters, 2016, 258, S247.	0.4	4
48	In Vitro and in Vivo Anti-Trypanosoma cruziActivity of New Arylamine Mannich Base-Type Derivatives. Journal of Medicinal Chemistry, 2016, 59, 10929-10945.	2.9	30
49	Synthesis and biological evaluation of quinoxaline di- N -oxide derivatives with in vitro trypanocidal activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 903-906.	1.0	16
50	The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Frontiers in Genetics, 2015, 6, 239.	1.1	62
51	The comet assay: past, present, and future. Frontiers in Genetics, 2015, 6, 266.	1.1	103
52	Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food and Chemical Toxicology, 2015, 76, 116-124.	1.8	58
53	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	1.3	239
54	Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis, 2015, 36, S61-S88.	1.3	149

#	Article	IF	CITATIONS
55	Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 206-217.	2.0	21
56	Preliminary study of genotoxicity evaluation of orthodontic miniscrews on mucosa oral cells by the alkaline comet assay. Toxicology Mechanisms and Methods, 2015, 25, 487-493.	1.3	2
57	Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay?. Mutagenesis, 2015, 30, 21-28.	1.0	26
58	Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis, 2015, 30, 85-88.	1.0	37
59	Assessment of DNA damage using comet assay in middle-aged overweight/obese subjects after following a hypocaloric diet supplemented with cocoa extract. Mutagenesis, 2015, 30, 139-146.	1.0	18
60	High throughput sample processing and automated scoring. Frontiers in Genetics, 2014, 5, 373.	1.1	17
61	Comet assay to measure DNA repair: approach and applications. Frontiers in Genetics, 2014, 5, 288.	1.1	130
62	Controlling variation in the comet assay. Frontiers in Genetics, 2014, 5, 359.	1.1	83
63	Methods for Measuring DNA Repair: Introduction and Cellular Repair. Methods in Pharmacology and Toxicology, 2014, , 365-376.	0.1	2
64	Base excision repair capacity in chronic renal failure patients undergoing hemodialysis treatment. Cell Biochemistry and Function, 2014, 32, 177-182.	1.4	20
65	A Standardized Protocol for the In Vitro Comet-Based DNA Repair Assay. Methods in Pharmacology and Toxicology, 2014, , 377-395.	0.1	3
66	Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories. Mutagenesis, 2014, 29, 241-249.	1.0	30
67	Donor cornea transfer from Optisol GS to organ culture storage: a twoâ€step procedure to increase donor tissue lifespan. Acta Ophthalmologica, 2013, 91, 219-225.	0.6	22
68	DNA-repair measurements by use of the modified comet assay: An inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 757, 60-67.	0.9	37
69	Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. European Journal of Medicinal Chemistry, 2013, 66, 324-334.	2.6	44
70	A comparative performance test of standard, medium- and high-throughput comet assays. Toxicology in Vitro, 2013, 27, 768-773.	1.1	58
71	An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells. Mutagenesis, 2013, 28, 279-286.	1.0	78
72	Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay – A methodological overview. DNA Repair, 2013, 12, 1007-1010.	1.3	40

#	Article	IF	CITATIONS
73	The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis, 2013, 28, 427-432.	1.0	124
74	DNA damage in lens epithelium of cataract patients <i>in vivo</i> and <i>ex vivo</i> . Acta Ophthalmologica, 2013, 91, 652-656.	0.6	41
75	Novel formats for the comet assay. Toxicology Letters, 2013, 221, S189.	0.4	0
76	The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archives of Toxicology, 2013, 87, 949-968.	1.9	379
77	Enhancing the sensitivity of the comet assay as a genotoxicity test, by combining it with bacterial repair enzyme FPG. Mutagenesis, 2013, 28, 271-277.	1.0	74
78	Vitamin C in Cultured Human (HeLa) Cells: Lack of Effect on DNA Protection and Repair. Nutrients, 2013, 5, 1200-1217.	1.7	18
79	Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis, 2012, 27, 665-672.	1.0	79
80	DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 736, 122-129.	0.4	97
81	Single-Cell Gel Electrophoresis Combined with Lesion-Specific Enzymes to Measure Oxidative Damage to DNA. Methods in Cell Biology, 2012, 112, 69-92.	0.5	28
82	Effects of micronutrients on DNA repair. European Journal of Nutrition, 2012, 51, 261-279.	1.8	63
83	Carotenoids and DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 733, 4-13.	0.4	55
84	The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis, 2011, 26, 393-399.	1.0	95
85	Ochratoxin A reduces aflatoxin B1 induced DNA damage detected by the comet assay in Hep G2 cells. Food and Chemical Toxicology, 2011, 49, 2883-2889.	1.8	57
86	Towards a more reliable comet assay: Optimising agarose concentration, unwinding time and electrophoresis conditions. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 724, 41-45.	0.9	106
87	DNA Repair Measured by the Comet Assay. , 2011, , .		7
88	The influence of sterilization with EnbioJetÂ $^{\odot}$ Microwave Flow Pasteurizer on composition and bioactivity of aronia and blue-berried honeysuckle juices. Journal of Food Composition and Analysis, 2011, 24, 880-888.	1.9	37
89	Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors. Cell Biochemistry and Function, 2011, 29, 36-42.	1.4	30
90	An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis, 2010, 25, 125-132.	1.0	99

#	Article	IF	Citations
91	The fullâ€length isoform of the mouse pleckstrin homology domainâ€interacting protein (PHIP) is required for postnatal growth. FEBS Letters, 2010, 584, 4121-4127.	1.3	17
92	Variation in the measurement of DNA damage by comet assay measured by the ECVAGÂ inter-laboratory validation trial. Mutagenesis, 2010, 25, 113-123.	1.0	155
93	Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicology Letters, 2010, 195, 31-34.	0.4	87
94	Polyphenolic Compounds from Salvia Species Protect Cellular DNA from Oxidation and Stimulate DNA Repair in Cultured Human Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 7465-7471.	2.4	68
95	In vitro comet assay for DNA repair: a warning concerning application to cultured cells. Mutagenesis, 2009, 24, 379-381.	1.0	23
96	Antiproliferative effect of flavomannin-6,6′-dimethylether from Tricholoma equestre on Caco-2 cells. Toxicology, 2009, 264, 192-197.	2.0	10
97	Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis, 2009, 30, 1402-1407.	1.3	125
98	DNA oxidation: Investigating its key role in environmental mutagenesis with the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 674, 101-108.	0.9	161
99	Detection of Oxidised DNA Using DNA Repair Enzymes. Issues in Toxicology, 2009, , 57-78.	0.2	2
100	Antitumoral Effect of Phenazine $\langle i \rangle N \langle i \rangle \langle sup \rangle 5 \langle sup \rangle \langle i \rangle N \langle i \rangle \langle sup \rangle 10 \langle sup \rangle -Dioxide Derivatives on Caco-2 Cells. Chemical Research in Toxicology, 2008, 21, 1578-1585.$	1.7	25
101	The comet assay: topical issues. Mutagenesis, 2008, 23, 143-151.	1.0	811
102	The carotenoid \hat{A} -cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis, 2008, 30, 308-314.	1.3	133
103	Comparative Acute Systemic Toxicity of Several Quinoxaline 1,4-Di-N-oxides in Wistar Rats. Arzneimittelforschung, 2007, 57, 339-346.	0.5	0
104	Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2007, 15, 3356-3367.	1.4	260
105	A quinoxaline 1,4-di-N-oxide derivative induces DNA oxidative damage not attenuated by vitamin C and E treatment. Chemico-Biological Interactions, 2007, 168, 95-105.	1.7	47
106	In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicology and Applied Pharmacology, 2007, 220, 216-224.	1.3	55
107	The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: Oxidative DNA damage, gluthatione depletion and stress proteins induction. Toxicology, 2007, 232, 294-302.	2.0	164
108	Anticancer effect of a new benzophenanthridine isolated from Zanthoxylum madagascariense (Rutaceline). In Vivo, 2007, 21, 417-22.	0.6	12

#	Article	IF	CITATIONS
109	Phenazine 5,10-Dioxide Derivatives as Hypoxic Selective Cytotoxins: Part II. Structure-Activity Relationship Studies. Medicinal Chemistry, 2006, 2, 511-521.	0.7	18
110	Design andÂevaluation of"3 + 1―mixed ligand oxorhenium andÂoxotechnetium complexes bearing aÂnitroaromatic group with potential application inÂnuclear medicine oncology. European Journal of Medicinal Chemistry, 2006, 41, 1144-1152.	2.6	27
111	Indazole N-oxide derivatives as antiprotozoal agents: Synthesis, biological evaluation and mechanism of action studies. Bioorganic and Medicinal Chemistry, 2006, 14, 3467-3480.	1.4	78
112	Selective hypoxia-cytotoxins based on vanadyl complexes with 3-aminoquinoxaline-2-carbonitrile-N1,N4-dioxide derivatives. Journal of Inorganic Biochemistry, 2006, 100, 1358-1367.	1.5	22
113	Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: evidence of the relationship with cytotoxicity. Mutagenesis, 2006, 22, 35-42.	1.0	95
114	Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde) Tj ETQq0 0 0 rgB	Γ/Olwerlocl	R 1 0.7 f 50 53
115	Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 3197-3207.	1.4	63
116	Novel Cu(II) quinoxaline N1,N4-dioxide complexes as selective hypoxic cytotoxins. European Journal of Medicinal Chemistry, 2005, 40, 473-480.	2.6	58
117	Selective Toxicity of a Quinoxaline 1,4-Di-N-oxide Derivative in Human Tumour Cell Lines. Arzneimittelforschung, 2005, 55, 177-182.	0.5	2
118	DNA damage induced by a quinoxaline 1,4-di-N-oxide derivative (hypoxic selective agent) in Caco-2 cells evaluated by the comet assay. Mutagenesis, 2005, 20, 165-171.	1.0	20
119	Phenazine 5,10-Dioxide Derivatives as Hypoxic Selective Cytotoxins. Journal of Medicinal Chemistry, 2005, 48, 21-23.	2.9	52
120	1, 2, 4-TriazineN-oxide Derivatives: Studies as Potential Hypoxic Cytotoxins. Part III. Archiv Der Pharmazie, 2004, 337, 271-280.	2.1	19
121	Ruthenium (II) nitrofurylsemicarbazone complexes: new DNA binding agents. European Journal of Medicinal Chemistry, 2004, 39, 377-382.	2.6	32
122	A comparative study on the gastroduodenal tolerance of different antianaemic preparations. Human and Experimental Toxicology, 2003, 22, 137-141.	1.1	12