Anne-Laure Calendron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506965/publications.pdf

Version: 2024-02-01

64 papers

884 citations

567281 15 h-index 24 g-index

65 all docs

65 docs citations

65 times ranked 709 citing authors

#	Article	IF	CITATIONS
1	Ultrafast electron diffractometer with Terahertz-driven pulse compression. , 2021, , .		o
2	Bulk, cascaded pulse compression scheme and its application to spin emitter characterization. Applied Optics, 2021, 60, 912.	1.8	2
3	µJ-level multi-cycle terahertz generation in a periodically poled Rb:KTP crystal. Optics Letters, 2021, 46, 741.	3.3	9
4	Ultrafast electron diffraction powered with a Terahertz-driven pulse compressor., 2021,,.		0
5	THz-Enhanced DC Ultrafast Electron Diffractometer. Ultrafast Science, 2021, 2021, .	11.2	15
6	Cascaded Multicycle Terahertz-Driven Ultrafast Electron Acceleration and Manipulation. Physical Review X, 2020, 10 , .	8.9	32
7	Novel method for the angular chirp compensation of passively CEP-stable few-cycle pulses. Optics Express, 2020, 28, 3171.	3.4	3
8	Multi-cycle terahertz driven ultrafast electron manipulation in dielectrically-lined waveguides. , 2020, , .		0
9	High Energy Cryogenic Yb:YAG and Yb:YLF Chirped Pulse Amplifiers. , 2020, , .		O
10	Multi-cycle terahertz generation in a periodically poled Rb:KTP crystal. , 2020, , .		0
11	Compact terahertz driven electron and X-ray sources. , 2020, , .		О
12	Joule-Class 500 Hz Cryogenic Yb:YAG Chirped Pulse Amplifier. , 2019, , .		O
13	Excitation and control of spin waves in FeBO3 by a strong-field THz pulse. EPJ Web of Conferences, 2019, 205, 07008.	0.3	O
14	Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nature Communications, 2019, 10, 2591.	12.8	96
15	Segmented Terahertz device for ultrashort electron acceleration, compression, focusing and streaking. EPJ Web of Conferences, 2019, 205, 01013.	0.3	O
16	Electro-Optic Sampling of Terahertz Pulses in Multilayer Crystals. , 2019, , .		2
17	Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica, 2019, 6, 872.	9.3	48
18	Novel method for CEP-stable seeding of few-cycle OPCPAs., 2019, , .		0

#	Article	IF	CITATIONS
19	Strong-field THz source for magneto-optic experiment. , 2019, , .		O
20	Terahertz Acceleration. , 2019, , .		0
21	Terahertz generation and acceleration. , 2019, , .		1
22	Laser system design for table-top X-ray light source. High Power Laser Science and Engineering, 2018, 6,	4.6	16
23	Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 2018, 12, 336-342.	31.4	236
24	Cascaded interactions mediated by terahertz radiation. Optics Express, 2018, 26, 12536.	3.4	17
25	Enhanced high-harmonic generation up to the soft X-ray region driven by mid-infrared pulses mixed with their third harmonic. Optics Express, 2018, 26, 16955.	3.4	24
26	Timing stabilization of solid-state, Yb-based laser system. , 2018, , .		1
27	Wavefront Analysis of White-light Supercontinuum. , 2018, , .		0
28	Frequency-shifted sources for terahertz-driven linear electron acceleration. , 2018, , .		0
29	Wavefront analysis of a white-light supercontinuum. Optics Express, 2018, 26, 31299.	3.4	3
30	Cascaded second-order processes for the efficient generation of narrowband terahertz radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 044002.	1.5	13
31	THz-driven electron streak camera based on a multilayer structure. , 2017, , .		0
32	Terahertz Accelerator Technology. , 2017, , .		0
33	Optical generation of single-cycle 10 MW peak power 100 GHz waves. Optics Express, 2016, 24, 21059.	3.4	12
34	40-ÂμJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers. Optics Express, 2016, 24, 25169.	3.4	22
35	Terahertz-driven, all-optical electron gun. Optica, 2016, 3, 1209.	9.3	78
36	Demonstration of an ultracompact THz-driven electron gun. , 2016, , .		0

#	Article	IF	Citations
37	Highly efficient generation of strong-field 0.1-THz radiation. , 2016, , .		O
38	High energetic and highly stable pulses from a Ho:YLF regenerative amplifier. Proceedings of SPIE, 2016,	0.8	0
39	Cascaded optical parametric chirped-pulse amplification for multi-cycle THz-wave generation. , 2016, , .		1
40	Temporal Characterization of Front-End for Yb-Based High-Energy Optical Waveform Synthesizers. , 2016, , .		O
41	Terahertz-driven, sub-keV electron gun. , 2016, , .		1
42	Sub-keV Electron Gun Driven by Ultrafast THz Pulses. , 2016, , .		O
43	Ho:YLF Regenerative Amplifier with 6.9 mJ at 1 kHz Overcoming Bifurcation Instability., 2015,,.		O
44	Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers. Optics Letters, 2015, 40, 5427.	3.3	34
45	High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier. Optics Express, 2015, 23, 10132.	3.4	31
46	White-light generation with sub-ps pulses. Optics Express, 2015, 23, 13866.	3.4	42
47	High energy and low noise Ho:YLF regenerative amplifiers: a noise and stability analysis. , 2015, , .		1
48	Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. Optics Letters, 2015, 40, 2610.	3.3	57
49	Front-End of Yb-based High-Energy Optical Waveform Synthesizer. , 2015, , .		1
50	White-light Generation Pumped by Sub-ps Pulse. , 2015, , .		0
51	On Extracting the Maximum Terahertz Conversion Efficiency from Optical Rectification in Lithium Niobate. , 2015, , .		O
52	High-energy kHz Yb:KYW dual-crystal regenerative amplifier. Optics Express, 2014, 22, 24752.	3.4	42
53	Optimized Temperature/Bandwidth Operation of Cryogenic Yb:YAG Composite Thin-Disk Laser Amplifier. , 2014, , .		O
54	Passively CEP-stable front end for frequency synthesis. , 2014, , .		0

#	Article	IF	CITATIONS
55	Highly efficient broadband sum-frequency generation in the visible wavelength range. Optics Letters, 2014, 39, 2912.	3.3	17
56	1 kHz, Multi-mJ Yb:KYW Bulk Regenerative Amplifier. , 2014, , .		1
57	High energy and power cryogenic composite-thin-disk Yb:YAG laser. , 2013, , .		O
58	High power Yb:CALGO multi-crystal oscillator. , 2013, , .		0
59	Dual-crystal Yb:CALGO high power laser and regenerative amplifier. Optics Express, 2013, 21, 26174.	3.4	24
60	Optimization of ultrafast Yb-doped fiber amplifiers to achieve high-quality compressed pulses. EPJ Web of Conferences, 2013, 41, 10020.	0.3	0
61	Cryogenic Composite Thin Disk High Energy Pulsed, High Average Power, Diffraction Limited Multi-Pass Amplifier. , 2013, , .		O
62	High power Yb:Lu2O3 dual-crystal laser. , 2013, , .		1
63	Adiabatic sum-frequency generation in the visible region. , 2013, , .		0
64	High power multi-crystal cw and femtosecond mode-locked oscillators based on Yb:KYW. Proceedings of SPIE, 2009, , .	0.8	0