List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506747/publications.pdf Version: 2024-02-01

DHILIDDE C. EDANK

#	Article	IF	CITATIONS
1	Identification of a Positive Association between Mammary Adipose Cholesterol Content and Indicators of Breast Cancer Aggressiveness in a French Population. Journal of Nutrition, 2021, 151, 1119-1127.	1.3	3
2	Oxidized Products of α-Linolenic Acid Negatively Regulate Cellular Survival and Motility of Breast Cancer Cells. Biomolecules, 2020, 10, 50.	1.8	8
3	EPA and DHA Fatty Acids Induce a Remodeling of Tumor Vasculature and Potentiate Docetaxel Activity. International Journal of Molecular Sciences, 2020, 21, 4965.	1.8	13
4	Low Levels of Omega-3 Long-Chain Polyunsaturated Fatty Acids Are Associated with Bone Metastasis Formation in Premenopausal Women with Breast Cancer: A Retrospective Study. Nutrients, 2020, 12, 3832.	1.7	8
5	Development of a Novel Highâ€Performance Thin Layer Chromatography–Based Method for the Simultaneous Quantification of Clinically Relevant Lipids from Cells and Tissue Extracts. Lipids, 2020, 55, 403-412.	0.7	5
6	Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells. Breast Cancer Research, 2020, 22, 38.	2.2	19
7	SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer. Frontiers in Pharmacology, 2016, 7, 338.	1.6	60
8	SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer. Nature Communications, 2016, 7, 13648.	5.8	57
9	Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype. Frontiers in Cardiovascular Medicine, 2015, 2, 27.	1.1	11
10	Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell and Tissue Research, 2014, 356, 147-157.	1.5	55
11	Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell and Tissue Research, 2014, 358, 821-831.	1.5	15
12	Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Research, 2013, 15, R87.	2.2	108
13	Ablation of Calcineurin AÎ ² Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	1.6	16
14	Atherosclerosis, Caveolae and Caveolin-1. Advances in Experimental Medicine and Biology, 2012, 729, 127-144.	0.8	35
15	Cholesterol and breast cancer development. Current Opinion in Pharmacology, 2012, 12, 677-682.	1.7	102
16	Abstract 4123: Cholesterol and breast cancer. , 2012, , .		0
17	Role of Cholesterol in the Development and Progression of Breast Cancer. American Journal of Pathology, 2011, 178, 402-412.	1.9	257
18	Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith–Lemli–Opitz syndrome. Molecular Genetics and Metabolism, 2011, 104, 346-355.	0.5	18

#	Article	IF	CITATIONS
19	Caveolin-2-deficient mice show increased sensitivity to endotoxemia. Cell Cycle, 2011, 10, 2151-2161.	1.3	23
20	Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect― A transcriptional informatics analysis with validation. Cell Cycle, 2010, 9, 2201-2219.	1.3	212
21	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	1.1	26
22	Ketones and lactate "fuel―tumor growth and metastasis. Cell Cycle, 2010, 9, 3506-3514.	1.3	526
23	Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts. American Journal of Physiology - Cell Physiology, 2010, 298, C693-C701.	2.1	27
24	The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 2010, 9, 1960-1971.	1.3	192
25	Celecoxib Combined with Atorvastatin Prevents Progression ofÂAtherosclerosis. Journal of Surgical Research, 2010, 163, e113-e122.	0.8	19
26	The autophagic tumor stroma model of cancer. Cell Cycle, 2010, 9, 3485-3505.	1.3	248
27	Endothelial Caveolae and Caveolin-1 as Key Regulators of Atherosclerosis. American Journal of Pathology, 2010, 177, 544-546.	1.9	24
28	A Western-Type Diet Accelerates Tumor Progression in an Autochthonous Mouse Model of Prostate Cancer. American Journal of Pathology, 2010, 177, 3180-3191.	1.9	102
29	Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging, 2010, 2, 185-199.	1.4	136
30	The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8, 3984-4001.	1.3	1,130
31	Towards a new "stromal-based―classification system for human breast cancer prognosis and therapy. Cell Cycle, 2009, 8, 1654-1658.	1.3	64
32	Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell and Tissue Research, 2009, 335, 41-47.	1.5	129
33	Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Laboratory Investigation, 2009, 89, 614-623.	1.7	76
34	Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature. American Journal of Pathology, 2009, 174, 1650-1662.	1.9	73
35	Loss of Caveolin-3 Induces a Lactogenic Microenvironment that Is Protective Against Mammary Tumor Formation. American Journal of Pathology, 2009, 174, 613-629.	1.9	20
36	Caveolin-1â^'/â^' Null Mammary Stromal Fibroblasts Share Characteristics with Human Breast Cancer-Associated Fibroblasts. American Journal of Pathology, 2009, 174, 746-761.	1.9	123

#	Article	IF	CITATIONS
37	Genetic Ablation of Caveolin-1 Drives Estrogen-Hypersensitivity and the Development of DCIS-Like Mammary Lesions. American Journal of Pathology, 2009, 174, 1172-1190.	1.9	57
38	Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behavioural Brain Research, 2008, 188, 255-262.	1.2	38
39	Role of caveolin-1 in the regulation of lipoprotein metabolism. American Journal of Physiology - Cell Physiology, 2008, 295, C242-C248.	2.1	121
40	ICAM-1: role in inflammation and in the regulation of vascular permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H926-H927.	1.5	113
41	Caveolae and Caveolin-1: Novel Potential Targets for the Treatment of Cardiovascular Disease. Current Pharmaceutical Design, 2007, 13, 1761-1769.	0.9	48
42	Caveolin-1 and Liver Regeneration: Role in Proliferation and Lipogenesis. Cell Cycle, 2007, 6, 115-116.	1.3	21
43	Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1269-1274.	1.5	47
44	Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2006, 74, 6665-6674.	1.0	86
45	Zebrafish as a Novel Model System to Study the Function of Caveolae and Caveolin-1 in Organismal Biology. American Journal of Pathology, 2006, 169, 1910-1912.	1.9	10
46	PV-1 is Negatively Regulated by VEGF in the Lung of Cav-1, but not Cav-2, Null Mice. Cell Cycle, 2006, 5, 2012-2020.	1.3	16
47	PV-1 Labels Trans-Cellular Openings in Mouse Endothelial Cells and is Negatively Regulated by VEGF. Cell Cycle, 2006, 5, 2021-2028.	1.3	8
48	Defining lipid raft structure and function with proximity imaging. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2165-H2166.	1.5	3
49	Caveolin-1-deficient aortic smooth muscle cells show cell autonomous abnormalities in proliferation, migration, and endothelin-based signal transduction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2393-H2401.	1.5	65
50	Caveolin-1 and regulation of cellular cholesterol homeostasis. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H677-H686.	1.5	134
51	Role of caveolin-1 in the regulation of the vascular shear stress response. Journal of Clinical Investigation, 2006, 116, 1222-1225.	3.9	30
52	Chapter 11 Caveolin Proteins in Cardiopulmonary Disease and Lung Cancers. Advances in Molecular and Cell Biology, 2005, , 211-233.	0.1	2
53	Loss of Caveolin-1 Causes the Hyper-Proliferation of Intestinal Crypt Stem Cells, with Increased Sensitivity to Whole Body ?-Radiation. Cell Cycle, 2005, 4, 1817-1825.	1.3	73
54	Chapter 10 Caveolae and Caveolins in the Vascular System: Functional Roles in Endothelia, Macrophages, and Smooth Muscle Cells. Advances in Molecular and Cell Biology, 2005, 36, 187-209.	0.1	0

PHILIPPE G FRANK

#	Article	IF	CITATIONS
55	A biphasic response of hepatobiliary cholesterol metabolism to dietary fat at the onset of obesity in the mouse. Hepatology, 2005, 41, 887-895.	3.6	9
56	ATR/TEM8 is highly expressed in epithelial cells liningBacillus anthracis'three sites of entry: implications for the pathogenesis of anthrax infection. American Journal of Physiology - Cell Physiology, 2005, 288, C1402-C1410.	2.1	98
57	Caveolin-1 Promotes Tumor Progression in an Autochthonous Mouse Model of Prostate Cancer. Journal of Biological Chemistry, 2005, 280, 25134-25145.	1.6	151
58	Impaired Phagocytosis in Caveolin-1 Deficient Macrophages. Cell Cycle, 2005, 4, 1599-1607.	1.3	59
59	Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. American Journal of Physiology - Cell Physiology, 2005, 288, C677-C691.	2.1	59
60	Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 98-105.	1.1	206
61	Caveolin-1 Deficiency Stimulates Neointima Formation during Vascular Injury. Biochemistry, 2004, 43, 8312-8321.	1.2	73
62	Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Current Opinion in Lipidology, 2004, 15, 523-529.	1.2	72
63	Caveolin-1 Null (â^/â^) Mice Show Dramatic Reductions in Life Spanâ€. Biochemistry, 2003, 42, 15124-15131.	1.2	134
64	Proteasome Inhibitor (MG-132) Treatment of mdx Mice Rescues the Expression and Membrane Localization of Dystrophin and Dystrophin-Associated Proteins. American Journal of Pathology, 2003, 163, 1663-1675.	1.9	111
65	Caveolin, Caveolae, and Endothelial Cell Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1161-1168.	1.1	326
66	Microvascular Hyperpermeability in Caveolin-1 (â^'/â^') Knock-out Mice. Journal of Biological Chemistry, 2002, 277, 40091-40098.	1.6	290
67	Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities. Journal of Biological Chemistry, 2002, 277, 8635-8647.	1.6	494
68	Stabilization of Caveolin-1 by Cellular Cholesterol and Scavenger Receptor Class B Type Iâ€. Biochemistry, 2002, 41, 11931-11940.	1.2	75
69	Caveolin-1/3 Double-Knockout Mice Are Viable, but Lack Both Muscle and Non-Muscle Caveolae, and Develop a Severe Cardiomyopathic Phenotype. American Journal of Pathology, 2002, 160, 2207-2217.	1.9	192
70	Caveolin-1-deficient Mice Show Accelerated Mammary Gland Development During Pregnancy, Premature Lactation, and Hyperactivation of the Jak-2/STAT5a Signaling Cascade. Molecular Biology of the Cell, 2002, 13, 3416-3430.	0.9	107
71	Heteronuclear NMR studies of human serum apolipoprotein A-I. FEBS Letters, 2002, 517, 139-143.	1.3	28
72	Secondary structure of human apolipoprotein A-I(1-186) in lipid-mimetic solution. FEBS Letters, 2001, 487, 390-396.	1.3	26

5

#	Article	IF	CITATIONS
73	Adenovirus-Mediated Expression of Caveolin-1 in Mouse Liver Increases Plasma High-Density Lipoprotein Levels. Biochemistry, 2001, 40, 10892-10900.	1.2	38
74	Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. American Journal of Physiology - Cell Physiology, 2001, 280, C1204-C1214.	2.1	65
75	Caveolae-deficient Endothelial Cells Show Defects in the Uptake and Transport of Albumin in Vivo. Journal of Biological Chemistry, 2001, 276, 48619-48622.	1.6	289
76	Caveolin-1 Expression Negatively Regulates Cell Cycle Progression by Inducing G ₀ /G ₁ Arrest via a p53/p21 ^{WAF1/Cip1} -dependent Mechanism. Molecular Biology of the Cell, 2001, 12, 2229-2244.	0.9	259
77	Distinct Central Amphipathic α-Helices in Apolipoprotein A-I Contribute to the in Vivo Maturation of High Density Lipoprotein by Either Activating Lecithin-Cholesterol Acyltransferase or Binding Lipids. Journal of Biological Chemistry, 2000, 275, 5043-5051.	1.6	39
78	Apolipoprotein A-I: structure–function relationships. Journal of Lipid Research, 2000, 41, 853-872.	2.0	253
79	Apolipoprotein A-I: structure-function relationships. Journal of Lipid Research, 2000, 41, 853-72.	2.0	180
80	Seminal plasma choline phospholipid-binding proteins stimulate cellular cholesterol and phospholipid efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 38-46.	1.2	28
81	Effect of Apolipoprotein A-I Lipidation on the Formation and Function of Pre-β and α-Migrating LpA-I Particlesâ€. Biochemistry, 1999, 38, 1727-1735.	1.2	63
82	Deletion of the C-Terminal Domain of Apolipoprotein A-I Impairs Cell Surface Binding and Lipid Efflux in Macrophage. Biochemistry, 1999, 38, 14524-14533.	1.2	64
83	Effect of the surface lipid composition of reconstituted LPA-I on apolipoprotein A-I structure and lecithin:cholesterol acyltransferase activity. Lipids and Lipid Metabolism, 1998, 1390, 160-172.	2.6	32
84	Importance of Central α-Helices of Human Apolipoprotein A-I in the Maturation of High-Density Lipoproteins. Biochemistry, 1998, 37, 13902-13909.	1.2	35
85	Deletion of Central α-Helices in Human Apolipoprotein A-I: Effect on Phospholipid Associationâ€. Biochemistry, 1997, 36, 1798-1806.	1.2	35
86	Characterization of human apolipoprotein A-I expressed in Escherichia coli. Lipids and Lipid Metabolism, 1997, 1344, 139-152.	2.6	41
87	Apolipoprotein A-I Conformation in Reconstituted Discoidal Lipoproteins Varying in Phospholipid and Cholesterol Content. Journal of Biological Chemistry, 1995, 270, 27429-27438.	1.6	133