
Gilles Subra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506691/publications.pdf Version: 2024-02-01

CILLES SLIPDA

#	Article	IF	CITATIONS
1	Controlled Silylation of Polysaccharides: Attractive Building Blocks for Biocompatible Foams and Cell-Laden Hydrogels. ACS Applied Polymer Materials, 2022, 4, 4087-4097.	4.4	2
2	Nano-assemblies with core-forming hydrophobic polypeptide <i>via</i> polymerization-induced self-assembly (PISA). Polymer Chemistry, 2021, 12, 113-121.	3.9	17
3	Design of PEGylated Three Ligands Silica Nanoparticles for Multi-Receptor Targeting. Nanomaterials, 2021, 11, 177.	4.1	13
4	2-Phenyl-1 <i>H</i> -pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT ₆ Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chemical Neuroscience, 2021, 12, 1228-1240.	3.5	9
5	Bottom-up strategies for the synthesis of peptide-based polymers. Progress in Polymer Science, 2021, 115, 101377.	24.7	13
6	A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels, 2021, 7, 73.	4.5	11
7	Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT ₃ and 5-HT ₆ Receptor Antagonist with Antipsychotic and Procognitive Properties. Journal of Medicinal Chemistry, 2021, 64, 13279-13298.	6.4	14
8	Targeting out of range biomolecules: Chemical labeling strategies for qualitative and quantitative MALDI MS-based detection. TrAC - Trends in Analytical Chemistry, 2021, 143, 116399.	11.4	8
9	Neuropathic pain-alleviating activity of novel 5-HT6 receptor inverse agonists derived from 2-aryl-1H-pyrrole-3-carboxamide. Bioorganic Chemistry, 2021, 115, 105218.	4.1	4
10	Sol–gel process: the inorganic approach in protein imprinting. Journal of Materials Chemistry B, 2021, 9, 2155-2178.	5.8	12
11	Epimerization-Free C-Term Activation of Peptide Fragments by Ball Milling. Organic Letters, 2021, 23, 631-635.	4.6	21
12	Encapsulation of BSA in hybrid PEG hydrogels: stability and controlled release. RSC Advances, 2021, 11, 30887-30897.	3.6	2
13	Development of Amino Acids Functionalized SBA-15 for the Improvement of Protein Adsorption. Molecules, 2021, 26, 6085.	3.8	4
14	Turning peptides into bioactive nylons. European Polymer Journal, 2020, 135, 109886.	5.4	4
15	Self-Assembling Peptide—Polymer Nano-Objects <i>via</i> Polymerization-Induced Self-Assembly. Macromolecules, 2020, 53, 7034-7043.	4.8	28
16	Star-poly(lactide)-peptide hybrid networks as bioactive materials. European Polymer Journal, 2020, 139, 109990.	5.4	7
17	Hydrocarbon-Stapled Peptide Based-Nanoparticles for siRNA Delivery. Nanomaterials, 2020, 10, 2334.	4.1	3
18	Direct Synthesis of Peptide ontaining Silicones: A New Way to Bioactive Materials. Chemistry - A European Journal, 2020, 26, 12839-12845.	3.3	2

#	Article	IF	CITATIONS
19	Hybrid Silylated Peptides for the Design of Bio-functionalized Materials. Springer Protocols, 2020, , 69-92.	0.3	2
20	Inorganic Sol–Gel Polymerization for Hydrogel Bioprinting. ACS Omega, 2020, 5, 2640-2647.	3.5	13
21	The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. International Journal of Pharmaceutics, 2019, 568, 118507.	5.2	7
22	Self-mineralization and assembly of a bis-silylated Phe–Phe pseudodipeptide to a structured bioorganic–inorganic material. Materials Horizons, 2019, 6, 2040-2046.	12.2	5
23	Chemical insights into bioinks for 3D printing. Chemical Society Reviews, 2019, 48, 4049-4086.	38.1	145
24	Biocompatible Glycineâ€Assisted Catalysis of the Solâ€Gel Process: Development of Cellâ€Embedded Hydrogels. ChemPlusChem, 2019, 84, 1720-1729.	2.8	13
25	Silicone grafted bioactive peptides and their applications. Current Opinion in Chemical Biology, 2019, 52, 125-135.	6.1	7
26	Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications, 2019, 20, 100536.	1.9	47
27	Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chemical Communications, 2019, 55, 13112-13115.	4.1	9
28	Site-specific grafting on titanium surfaces with hybrid temporin antibacterial peptides. Journal of Materials Chemistry B, 2018, 6, 1782-1790.	5.8	26
29	Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. Journal of Materials Chemistry B, 2018, 6, 3434-3448.	5.8	41
30	Heteromultivalent targeting of integrin αvβ3 and neuropilin 1 promotes cell survival via the activation of the IGF-1/insulin receptors. Biomaterials, 2018, 155, 64-79.	11.4	12
31	Receptor–Ligand Interaction Measured by Inductively Coupled Plasma Mass Spectrometry and Selenium Labeling. Journal of Medicinal Chemistry, 2018, 61, 10173-10184.	6.4	12
32	Continuous flow ring-closing metathesis, an environmentally-friendly route to 2,5-dihydro-1H-pyrrole-3-carboxylates. Green Chemistry, 2017, 19, 1647-1652.	9.0	22
33	Modular bioink for 3D printing of biocompatible hydrogels: sol–gel polymerization of hybrid peptides and polymers. RSC Advances, 2017, 7, 12231-12235.	3.6	39
34	Sol–gel synthesis of collagen-inspired peptide hydrogel. Materials Today, 2017, 20, 59-66.	14.2	37
35	Bioactive peptides grafted silicone dressings: A simple and specific method. Materials Today Chemistry, 2017, 4, 73-83.	3.5	22
36	Ribbonâ€like Foldamers for Cellular Uptake and Drug Delivery. ChemBioChem, 2017, 18, 2110-2114.	2.6	12

#	Article	IF	CITATIONS
37	Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. International Journal of Pharmaceutics, 2017, 532, 790-801.	5.2	17
38	Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?. Beilstein Journal of Organic Chemistry, 2017, 13, 2087-2093.	2.2	51
39	Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels. PLoS ONE, 2016, 11, e0157943.	2.5	10
40	Novel 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]quinoline Based 5-HT ₆ Receptor Antagonists with Potential Application for the Treatment of Cognitive Disorders Associated with Alzheimer's Disease. ACS Chemical Neuroscience, 2016, 7, 972-983.	3.5	64
41	Application of the ring-closing metathesis to the formation of 2-aryl-1H-pyrrole-3-carboxylates as building blocks for biologically active compounds. Tetrahedron, 2016, 72, 7462-7469.	1.9	10
42	Selenazolidine: a selenium containing proline surrogate in peptide science. Organic and Biomolecular Chemistry, 2016, 14, 8101-8108.	2.8	10
43	Quantitative MALDIâ€MS Binding Assays: An Alternative to Radiolabeling. ChemMedChem, 2016, 11, 2582-2587.	3.2	7
44	Simple and Specific Grafting of Antibacterial Peptides on Silicone Catheters. Advanced Healthcare Materials, 2016, 5, 3067-3073.	7.6	39
45	A switchable stapled peptide. Journal of Peptide Science, 2016, 22, 143-148.	1.4	2
46	Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives. RSC Advances, 2016, 6, 32905-32914.	3.6	7
47	Easy Synthesis of Tunable Hybrid Bioactive Hydrogels. Chemistry of Materials, 2016, 28, 1261-1265.	6.7	25
48	Unambiguous and Controlled One-Pot Synthesis of Multifunctional Silica Nanoparticles. Chemistry of Materials, 2016, 28, 885-889.	6.7	29
49	Turning Peptide Sequences into Ribbon Foldamers by a Straightforward Multicyclization Reaction. Angewandte Chemie - International Edition, 2015, 54, 13966-13970.	13.8	15
50	Solidâ€Supported Synthesis and 5â€ <scp>HT</scp> ₇ /5â€ <scp>HT</scp> _{1A} Receptor Affinity of Arylpiperazinylbutyl Derivatives of 4,5â€dihydroâ€1,2,4â€triazineâ€6â€(1 <i>H</i>)â€one. Chemical Bi and Drug Design, 2015, 86, 697-703.	ol o gy	7
51	A New Way to Siliconeâ€Based Peptide Polymers. Angewandte Chemie - International Edition, 2015, 54, 3778-3782.	13.8	16
52	Turning peptides in comb silicone polymers. Journal of Peptide Science, 2015, 21, 243-247.	1.4	8
53	Engineered Adhesion Peptides for Improved Silicon Adsorption. Langmuir, 2015, 31, 11868-11874.	3.5	12
54	Solid-supported synthesis, molecular modeling, and biological activity of long-chain arylpiperazine derivatives with cyclic amino acid amide fragments as 5-HT7 and 5-HT1A receptor ligands. European Journal of Medicinal Chemistry, 2014, 78, 10-22.	5.5	23

#	Article	IF	CITATIONS
55	Inverse Peptide Synthesis via Activated αâ€Aminoesters. Angewandte Chemie - International Edition, 2014, 53, 5389-5393.	13.8	40
56	N- and O-acetylation of threonine residues in the context of proteomics. Journal of Proteomics, 2014, 108, 369-372.	2.4	8
57	Switchable polymer-grafted mesoporous silica's: from polyesters toÂpolyamides biosilica hybrid materials. Tetrahedron, 2013, 69, 7670-7674.	1.9	8
58	Heating and microwave assisted SPPS of C-terminal acid peptides on trityl resin: the truth behind the yield. Amino Acids, 2013, 45, 1395-1403.	2.7	19
59	The pipecolic linker—an acid-labile handle for derivatization of secondary amines on a solid-support. Part 3. Tetrahedron Letters, 2013, 54, 998-1002.	1.4	4
60	Chemical crossâ€linkers for protein structure studies by mass spectrometry. Proteomics, 2013, 13, 438-456.	2.2	65
61	Supported oligomethionine sulfoxide and Ellman's reagent for cysteine bridges formation. Amino Acids, 2013, 44, 733-742.	2.7	7
62	Synthesis of peptide-grafted comb polypeptidesviapolymerisation of NCA-peptides. Chemical Communications, 2013, 49, 409-411.	4.1	13
63	Bioorganic hybrid OMS by straightforward grafting of trialkoxysilyl peptides. Journal of Materials Chemistry B, 2013, 1, 2921.	5.8	19
64	From protected trialkoxysilyl-peptide building blocks to bioorganic–silica hybrid materials. Journal of Materials Chemistry B, 2013, 1, 6510.	5.8	18
65	Microwave-Mediated Reduction of Disulfide Bridges with Supported (Tris(2-carboxyethyl)phosphine) as Resin-Bound Reducing Agent. ACS Combinatorial Science, 2013, 15, 169-173.	3.8	9
66	A New Highly Versatile Handle for Chemistry on a Solid Support: The Pipecolic Linker. Chemistry - A European Journal, 2012, 18, 11536-11540.	3.3	9
67	Functionalised mesoporous silica: a good opportunity for controlled peptide oligomerisation. Journal of Materials Chemistry, 2011, 21, 6321.	6.7	16
68	Solid-Phase Synthesis of Arylpiperazine Derivatives and Implementation of the Distributed Drug Discovery (D3) Project in the Search for CNS Agents. Molecules, 2011, 16, 4104-4121.	3.8	2
69	Oxyfold: A Simple and Efficient Solid‣upported Reagent for Disulfide Bond Formation. Chemistry - an Asian Journal, 2011, 6, 2382-2389.	3.3	11
70	On the Manner of Cyclization of N-Acylated Aspartic and Glutamic Acid Derivatives. International Journal of Peptide Research and Therapeutics, 2011, 17, 93-100.	1.9	0
71	Solidâ€Phase Cross‣inking (SPCL): A new tool for protein structure studies. Proteomics, 2011, 11, 1277-1286.	2.2	3
72	From Polyesters to Polyamides Via ON Acyl Migration: An Original Multiâ€Transfer Reaction. Macromolecular Rapid Communications, 2011, 32, 876-880.	3.9	14

#	Article	IF	CITATIONS
73	A New Highly Versatile Handle for Chemistry on a Solid Support: The Pipecolic Linker. Chemistry - A European Journal, 2010, 16, 7547-7553.	3.3	13
74	Synthesis of Peptide Alcohols on the Basis of an O–N Acylâ€Transfer Reaction. Angewandte Chemie - International Edition, 2010, 49, 117-120.	13.8	35
75	A Straightforward Approach for Cellularâ€Uptake Quantification. Angewandte Chemie - International Edition, 2010, 49, 8240-8243.	13.8	9
76	Proteomics-based Refinement of Deinococcus deserti Genome Annotation Reveals an Unwonted Use of Non-canonical Translation Initiation Codons. Molecular and Cellular Proteomics, 2010, 9, 415-426.	3.8	90
77	Recycling the Versatile Pipecolic Linker. ACS Combinatorial Science, 2010, 12, 747-753.	3.3	6
78	Combinatorial Chemistry on Solid Support in the Search for Central Nervous System Agents. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 723-739.	1.1	11
79	A new generation of crossâ€linkers for selective detection by MALDI MS. Proteomics, 2009, 9, 5384-5388.	2.2	15
80	N-terminus FITC labeling of peptides on solid support: the truth behind the spacer. Tetrahedron Letters, 2009, 50, 260-263.	1.4	88
81	The influence of an ethylene spacer on the 5-HT1A and 5-HT2A receptor affinity of arylpiperazine derivatives of amides with N-acylated amino acids and 3-differently substituted pyrrolidine-2,5-diones. European Journal of Medicinal Chemistry, 2009, 44, 800-808.	5.5	7
82	Sulfonamides with the N-alkyl-N′-dialkylguanidine moiety as 5-HT7 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4827-4831.	2.2	14
83	The role of aspartyl-rich pentapeptides in comparative complexation of actinide(iv) and iron(iii). Part 1. New Journal of Chemistry, 2009, 33, 976.	2.8	16
84	A comparative study of actinide complexation in three ligand systems with increasing complexity. Journal of Physics: Conference Series, 2009, 190, 012185.	0.4	2
85	Synthesis of cyclic peptides via O–N-acyl migration. Tetrahedron Letters, 2008, 49, 4674-4676.	1.4	50
86	Microwave-assisted Solid Phase Peptide Synthesis on High Loaded Resins. International Journal of Peptide Research and Therapeutics, 2008, 14, 143-147.	1.9	36
87	Solid-Phase Synthesis of 4-Methylcarboxy-1,4-benzodiazepine-2,5-diones. ACS Combinatorial Science, 2008, 10, 869-874.	3.3	15
88	MSX-3D: a tool to validate 3D protein models using mass spectrometry. Bioinformatics, 2008, 24, 2782-2783.	4.1	17
89	On-Line Synthesis of Pseudopeptide Library Incorporating a Benzodiazepinone Turn Mimic:  Biological Evaluation on MC1 Receptors. ACS Combinatorial Science, 2007, 9, 254-262.	3.3	21
90	Discrimination and Selective Enhancement of Signals in the MALDI Mass Spectrum of a Protein by Combining a Matrix-Based Label for Lysine Residues with a Neutral Matrix. Angewandte Chemie - International Edition, 2007, 46, 5594-5597.	13.8	11

#	Article	IF	CITATIONS
91	Novel class of arylpiperazines containing N-acylated amino acids: Their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2007, 15, 2907-2919.	3.0	24
92	Synthesis and TGF-β Receptor Binding Inhibition of Multibranched Compounds. QSAR and Combinatorial Science, 2007, 26, 496-510.	1.4	1
93	Solid-Phase Synthesis of Aryl-Alkylamine Derivatives Using Protected Aminoalcohol Building Blocks on SynPhaseTM Lanterns. QSAR and Combinatorial Science, 2007, 26, 215-219.	1.4	5
94	Parallel Synthesis of a Lipopeptide Library by Hydrazone-Based Chemical Ligation. ACS Combinatorial Science, 2007, 9, 973-981.	3.3	11
95	Solid Phase Synthesis of a Hydroxypyrrolidine Derivative and its Use in Solid Phase Peptide Synthesis as Constrained Statine Mimic. International Journal of Peptide Research and Therapeutics, 2007, 13, 337-343.	1.9	3
96	Arylpiperazines with N-acylated amino acids as 5-HT1A receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3406-3410.	2.2	19
97	Methods and Protocols of Modern Solid Phase Peptide Synthesis. Molecular Biotechnology, 2006, 33, 239-254.	2.4	379
98	Tandem mass spectrometry of amidated peptides. Journal of Mass Spectrometry, 2006, 41, 1470-1483.	1.6	38
99	Parallel solid-phase synthesis and characterization of new sulfonamide and carboxamide proline derivatives as potential CNS agents. Bioorganic and Medicinal Chemistry, 2005, 13, 3029-3035.	3.0	17
100	A study on application of impregnated synthetic peptide TLC stationary phases for the screening of 5-HT1A ligands. Part 2. Biomedical Chromatography, 2004, 18, 542-549.	1.7	6
101	O–N-Acyl migration in N-terminal serine-containing peptides: mass spectrometric elucidation and subsequent development of site-directed acylation protocols. Tetrahedron Letters, 2004, 45, 1173-1178.	1.4	33
102	A New Class of Arylpiperazine Derivatives:Â the Library Synthesis on SynPhase Lanterns and Biological Evaluation on Serotonin 5-HT1Aand 5-HT2AReceptors. ACS Combinatorial Science, 2004, 6, 761-767.	3.3	30
103	Parallel and Mixture Combined Approach: Rapid Cheap Synthesis and Characterization of a 4096-Tripeptides Library. QSAR and Combinatorial Science, 2003, 22, 646-651.	1.4	2
104	Spiroimidazolidinone Library Derivatives on SynPhase Lanterns. ACS Combinatorial Science, 2003, 5, 356-361.	3.3	14
105	Glutamic acid as a new linker for attachment of alcohols to solid support. Tetrahedron Letters, 2002, 43, 9221-9223.	1.4	11
106	Preliminary selection of 5-HT1Areceptor ligands by TLC on plates impregnated with synthetic peptides. Journal of Planar Chromatography - Modern TLC, 2002, 15, 38-41.	1.2	4
107	Solid-phase synthesis of 3,7-disubstituted perhydro-1,4-diazepine-2,5-diones from amino acids and β-amino acids. Tetrahedron Letters, 2001, 42, 5389-5392.	1.4	21
108	A Rational Approach to the Design and Synthesis of a New Bradykinin B1 Receptor Antagonist. Journal of Medicinal Chemistry, 2000, 43, 2387-2394.	6.4	24

#	Article	IF	CITATIONS
109	Monitoring and quantification on solid support of a by-product formation during peptide synthesis by Tof-SIMS. Tetrahedron Letters, 1999, 40, 6217-6220.	1.4	22
110	Time-of-flight secondary ion mass spectrometry of Fmoc-amino acids linked to solid supports through ionic interactions. Rapid Communications in Mass Spectrometry, 1998, 12, 1715-1720.	1.5	8
111	Application of time-of-flight secondary ion mass spectrometry toin situ monitoring of solid-phase peptide synthesis on the MultipinTM system. Journal of Mass Spectrometry, 1998, 33, 1094-1103.	1.6	22
112	Gramâ€Scale Synthesis of a Hexapeptide by Fragment Coupling in a Ball Mill. European Journal of Organic Chemistry, 0, , .	2.4	4
113	MALDIâ€MS/MS of Nâ€Terminal TMPPâ€Acyl Peptides: A Worthwhile Tool to Decipher Protein Nâ€Termini. European Journal of Organic Chemistry, 0, , .	2.4	0