Paulo J Basso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506445/publications.pdf

Version: 2024-02-01

687220 794469 22 865 13 19 h-index citations g-index papers 25 25 25 1554 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>MS</scp> â€Driven Metabolic Alterations Are Recapitulated in <scp>iPSC</scp> â€Derived Astrocytes. Annals of Neurology, 2022, 91, 652-669.	2.8	5
2	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
3	Peroxisome Proliferator-Activated Receptor Alpha Mediates the Beneficial Effects of Atorvastatin in Experimental Colitis. Frontiers in Immunology, 2021, 12, 618365.	2.2	7
4	AMPK $\hat{l}\pm1$ in B Cells Dampens Primary Antibody Responses yet Promotes Mitochondrial Homeostasis and Persistence of B Cell Memory. Journal of Immunology, 2020, 205, 3011-3022.	0.4	18
5	Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Frontiers in Immunology, 2019, 10, 67.	2.2	53
6	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.	3.9	187
7	Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Reports, 2019, 27, 750-761.e7.	2.9	212
8	Role of the Microbiome in Intestinal Barrier Function and Immune Defense., 2019,, 127-138.		3
9	Sirtuins in B lymphocytes metabolism and function. World Journal of Experimental Medicine, 2019, 9, 1-13.	0.9	8
10	Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease – An Overview of Human Studies. Frontiers in Pharmacology, 2018, 9, 1571.	1.6	91
11	Amelioration of experimental colitis after shortâ€term therapy with glucocorticoid and its relationship to the induction of different regulatory markers. Immunology, 2017, 150, 115-126.	2.0	14
12	Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	7
13	Dehydroepiandrosterone (DHEA) restrains intestinal inflammation by rendering leukocytes hyporesponsive and balancing colitogenic inflammatory responses. Immunobiology, 2016, 221, 934-943.	0.8	18
14	Classical and recent advances in the treatment of inflammatory bowel diseases. Brazilian Journal of Medical and Biological Research, 2015, 48, 96-107.	0.7	82
15	Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease. International Immunopharmacology, 2015, 26, 13-22.	1.7	20
16	Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease. Brazilian Journal of Medical and Biological Research, 2014, 47, 727-737.	0.7	49
17	An alternative to the use of animals to teach diabetes mellitus. American Journal of Physiology - Advances in Physiology Education, 2014, 38, 235-238.	0.8	9
18	Cellular bioenergetics changes in magnocellular neurons may affect copeptin expression in the late phase of sepsis. Journal of Neuroimmunology, 2014, 267, 28-34.	1.1	17

#	Article	IF	CITATIONS
19	Cleaved caspase-3 expression in hypothalamic magnocellular neurons may affect vasopressin secretion during experimental polymicrobial sepsis. Journal of Neuroimmunology, 2013, 258, 10-16.	1.1	16
20	Oxidative stress in hypothalamic neurons may explain the impaired vasopressin secretion observed during sepsis. FASEB Journal, 2012, 26, 900.1.	0.2	0
21	Replacing laboratory animals by alternative material for teaching diabetes in practical classes. FASEB Journal, 2012, 26, 518.7.	0.2	O
22	Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides, 2010, 31, 1847-1852.	1.2	18