
Nigel Irwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9505991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic responses and benefits of glucagonâ€like peptideâ€1 (GLPâ€1) receptor ligands. British Journal of Pharmacology, 2022, 179, 526-541.	2.7	16
2	ls polypharmacy the future for pharmacological management of obesity?. Current Opinion in Endocrine and Metabolic Research, 2022, 23, 100322.	0.6	5
3	Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clinical Medicine Insights: Endocrinology and Diabetes, 2022, 15, 117955142210746.	1.0	6
4	GABA and insulin but not nicotinamide augment α- to β-cell transdifferentiation in insulin-deficient diabetic mice. Biochemical Pharmacology, 2022, 199, 115019.	2.0	11
5	Ac3IV, a V1a and V1b receptor selective vasopressin analogue, protects against hydrocortisone-induced changes in pancreatic islet cell lineage. Peptides, 2022, 152, 170772.	1.2	1
6	Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie, 2022, 199, 60-67.	1.3	3
7	Beneficial metabolic effects of recurrent periods of betaâ€cell rest and stimulation using stable neuropeptide Y1 and glucagonâ€like peptideâ€l receptor agonists. Diabetes, Obesity and Metabolism, 2022, 24, 2353-2363.	2.2	6
8	Enzymatically stable analogue of the gutâ€derived peptide xenin on betaâ€cell transdifferentiation in high fat fed and insulinâ€deficient <i>Ins1^{Cre/+};Rosa26â€eYFP mice</i> . Diabetes/Metabolism Research and Reviews, 2021, 37, e3384.	1.7	7
9	The methionine aminopeptidase 2 inhibitor, TNP-470, enhances the antidiabetic properties of sitagliptin in mice by upregulating xenin. Biochemical Pharmacology, 2021, 183, 114355.	2.0	6
10	Development and characterisation of novel, enzymatically stable oxytocin analogues with beneficial antidiabetic effects in high fat fed mice. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129811.	1.1	10
11	Pharmacology of Gut Hormone Mimetics for Obesity and Diabetes. , 2021, , .		1
12	Positive Effects of NPY1 Receptor Activation on Islet Structure Are Driven by Pancreatic Alpha- and Beta-Cell Transdifferentiation in Diabetic Mice. Frontiers in Endocrinology, 2021, 12, 633625.	1.5	12
13	Proglucagon-Derived Peptides as Therapeutics. Frontiers in Endocrinology, 2021, 12, 689678.	1.5	34
14	Benefits of Sustained Upregulated Unimolecular GLP-1 and CCK Receptor Signalling in Obesity-Diabetes. Frontiers in Endocrinology, 2021, 12, 674704.	1.5	8
15	Weightâ€reducing, lipidâ€lowering and antidiabetic activities of a novel arginine vasopressin analogue acting at the V1a and V1b receptors in highâ€fatâ€fed mice. Diabetes, Obesity and Metabolism, 2021, 23, 2215-2225.	2.2	4
16	A novel neurotensin/xenin fusion peptide enhances β-cell function and exhibits antidiabetic efficacy in high-fat fed mice. Bioscience Reports, 2021, 41, .	1.1	1
17	Comparison of independent and combined effects of the neurotensin receptor agonist, JMV-449, and incretin mimetics on pancreatic islet function, glucose homeostasis and appetite control. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129917.	1.1	2
18	Amplifying the antidiabetic actions of glucagonâ€like peptideâ€1: Potential benefits of new adjunct therapies. Diabetic Medicine, 2021, 38, e14699.	1.2	8

#	Article	IF	CITATIONS
19	Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clinical Medicine Insights: Endocrinology and Diabetes, 2021, 14, 117955142110060.	1.0	17
20	Xenin and Related Peptides: Potential Therapeutic Role in Diabetes and Related Metabolic Disorders. Clinical Medicine Insights: Endocrinology and Diabetes, 2021, 14, 117955142110438.	1.0	3
21	Established and emerging roles peptide YY (PYY) and exploitation in obesity–diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 253-261.	1.2	31
22	Beneficial impact of Ac3IV, an AVP analogue acting specifically at V1a and V1b receptors, on diabetes islet morphology and transdifferentiation of alpha- and beta-cells. PLoS ONE, 2021, 16, e0261608.	1.1	4
23	Peptide YY (1–36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic βâ€cell function, growth and survival. Diabetes, Obesity and Metabolism, 2020, 22, 404-416.	2.2	15
24	Blockade of gastric inhibitory polypeptide (GIP) action as a novel means of countering insulin resistance in the treatment of obesity-diabetes. Peptides, 2020, 125, 170203.	1.2	14
25	A GIP/xenin hybrid in combination with exendin-4 improves metabolic status in db/db diabetic mice and promotes enduring antidiabetic benefits in high fat fed mice. Biochemical Pharmacology, 2020, 171, 113723.	2.0	9
26	GIP analogues augment bone strength by modulating bone composition in diet-induced obesity in mice. Peptides, 2020, 125, 170207.	1.2	18
27	Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic GluCreERT2;ROSA26-eYFP mice. Peptides, 2020, 125, 170205.	1.2	24
28	Development and characterisation of a peptidergic N-and C-terminally stabilised mammalian NPY1R agonist which protects against diabetes induction. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129543.	1.1	10
29	Generation and characterisation of C-terminally stabilised PYY molecules with potential in vivo NPYR2 activity. Metabolism: Clinical and Experimental, 2020, 111, 154339.	1.5	8
30	Beneficial actions of a longâ€acting apelin analogue in diabetes are related to positive effects on islet cell turnover and transdifferentiation. Diabetes, Obesity and Metabolism, 2020, 22, 2468-2478.	2.2	17
31	Enteroendocrine K Cells Exert Complementary Effects to Control Bone Quality and Mass in Mice. Journal of Bone and Mineral Research, 2020, 35, 1363-1374.	3.1	12
32	Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance. Biochemical Pharmacology, 2020, 177, 114009.	2.0	18
33	Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes. Biological Chemistry, 2020, 401, 1293-1303.	1.2	8
34	Liraglutide and sitagliptin counter beta- to alpha-cell transdifferentiation in diabetes. Journal of Endocrinology, 2020, 245, 53-64.	1.2	31
35	Î ⁻ -Xenin-6 enhances sitagliptin effectiveness, but does not improve glucose tolerance. Journal of Endocrinology, 2020, 245, 219-230.	1.2	4
36	Short-term CFTR inhibition reduces islet area in C57BL/6 mice. Scientific Reports, 2019, 9, 11244.	1.6	4

#	Article	IF	CITATIONS
37	Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, r̈-xenin-6, on pancreatic islet function and metabolism. Molecular and Cellular Endocrinology, 2019, 496, 110523.	1.6	12
38	Effects of 2 Novel PYY(1-36) Analogues, (P ³ L ³¹ P ³⁴)PYY(1-36) and PYY(1-36)(Lys ¹² PAL), on Pancreatic Beta-Cell Function, Growth, and Survival. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141985562.	1.0	22
39	Antidiabetic effects and sustained metabolic benefits of sub-chronic co-administration of exendin-4/gastrin and xenin-8-Gln in high fat fed mice. European Journal of Pharmacology, 2019, 865, 172733.	1.7	1
40	Characterisation of Glucose-Dependent Insulinotropic Polypeptide Receptor Antagonists in Rodent Pancreatic Beta Cells and Mice. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141987545.	1.0	15
41	The GLP-1 Receptor Agonist Exenatide Ameliorates Bone Composition and Tissue Material Properties in High Fat Fed Diabetic Mice. Frontiers in Endocrinology, 2019, 10, 51.	1.5	19
42	Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival. Biochimie, 2019, 158, 191-198.	1.3	26
43	Sitagliptin Alters Bone Composition in High-Fat-Fed Mice. Calcified Tissue International, 2019, 104, 437-448.	1.5	15
44	Exendinâ€4(Lys ²⁷ PAL)/gastrin/xeninâ€8â€Gln: A novel acylated GLPâ€1/gastrin/xenin hybrid peptide that improves metabolic status in obeseâ€diabetic (<i>ob/ob</i>) mice. Diabetes/Metabolism Research and Reviews, 2019, 35, e3106.	1.7	13
45	Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141988887.	1.0	12
46	Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes/Metabolism Research and Reviews, 2018, 34, e3006.	1.7	25
47	Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides, 2018, 100, 269-274.	1.2	52
48	Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides, 2018, 100, 229-235.	1.2	54
49	A novel GLP-1/xenin hybrid peptide improves glucose homeostasis, circulating lipids and restores GIP sensitivity in high fat fed mice. Peptides, 2018, 100, 202-211.	1.2	28
50	Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides, 2018, 100, 260-268.	1.2	33
51	Expression of Gastrin Family Peptides in Pancreatic Islets and Their Role in β-Cell Function and Survival. Pancreas, 2018, 47, 190-199.	0.5	15
52	Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharmaceutical Development and Technology, 2018, 23, 370-381.	1.1	30
53	Association between attendance and overall academic performance on a module within a professional pharmacy degree. Currents in Pharmacy Teaching and Learning, 2018, 10, 396-401.	0.4	5
54	C-terminal degradation of PYY peptides in plasma abolishes effects on satiety and beta-cell function. Biochemical Pharmacology, 2018, 158, 95-102.	2.0	19

#	Article	IF	CITATIONS
55	Characterisation and antidiabetic utility of a novel hybrid peptide, exendin-4/gastrin/xenin-8-Gln. European Journal of Pharmacology, 2018, 834, 126-135.	1.7	15
56	Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochemical Pharmacology, 2018, 155, 264-274.	2.0	31
57	Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 749-758.	1.1	33
58	An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia, 2017, 60, 541-552.	2.9	27
59	Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biological Chemistry, 2017, 399, 79-92.	1.2	26
60	Differential expression of glucagon-like peptide-2 (GLP-2) is involved in pancreatic islet cell adaptations to stress and beta-cell survival. Peptides, 2017, 95, 68-75.	1.2	21
61	Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin. PLoS ONE, 2016, 11, e0152818.	1.1	24
62	A new stable GIP–Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone, 2016, 87, 102-113.	1.4	27
63	Glucagon receptor antagonist and GIP agonist combination for diet-induced obese mice. Journal of Endocrinology, 2016, 229, 319-330.	1.2	11
64	Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption. Bone, 2016, 91, 102-112.	1.4	33
65	Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Molecular and Cellular Endocrinology, 2016, 436, 102-113.	1.6	63
66	High fat-fed diabetic mice present with profound alterations of the osteocyte network. Bone, 2016, 90, 99-106.	1.4	34
67	A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 757-764.	1.1	22
68	Evaluation of the role of N-methyl-D-aspartate (NMDA) receptors in insulin secreting beta-cells. European Journal of Pharmacology, 2016, 771, 107-113.	1.7	10
69	(D-Ser2)Oxm[Lys38- and #947;-glu-PAL] improves hippocampal gene expression and cognition in a mouse model of type 1 diabetes. Journal of Experimental and Integrative Medicine, 2016, 6, 1.	0.1	6
70	Synthesis and Evaluation of a Series of Longâ€Acting Glucagonâ€Like Peptideâ€1 (GLPâ€1) Pentasaccharide Conjugates for the Treatment of Typeâ€2 Diabetes. ChemMedChem, 2015, 10, 1424-1434.	1.6	7
71	Pharmacological characterization and antidiabetic activity of a longâ€acting glucagonâ€like peptideâ€1 analogue conjugated to an antithrombin <scp>III</scp> â€binding pentasaccharide. Diabetes, Obesity and Metabolism, 2015, 17, 760-770.	2.2	7
72	Sustained treatment with a stable longâ€acting oxyntomodulin analogue improves metabolic control and islet morphology in an experimental model of type 1 diabetes. Diabetes, Obesity and Metabolism, 2015, 17, 887-895.	2.2	12

#	Article	IF	CITATIONS
73	Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus. Journal of Cellular Physiology, 2015, 230, 3009-3018.	2.0	60
74	New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World Journal of Diabetes, 2015, 6, 1285.	1.3	53
75	Effects of glucose-dependent insulinotropic polypeptide receptor knockout and a high-fat diet on cognitive function and hippocampal gene expression in mice. Molecular Medicine Reports, 2015, 12, 1544-1548.	1.1	21
76	Sequential induction of beta cell rest and stimulation using stable GIP inhibitor and GLP-1 mimetic peptides improves metabolic control in C57BL/KsJ db/db mice. Diabetologia, 2015, 58, 2144-2153.	2.9	30
77	Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice. Molecular and Cellular Endocrinology, 2015, 401, 120-129.	1.6	42
78	Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetologica, 2015, 52, 461-471.	1.2	34
79	A Novel CCK-8/GLP-1 Hybrid Peptide Exhibiting Prominent Insulinotropic, Glucose-Lowering, and Satiety Actions With Significant Therapeutic Potential in High-Fat–Fed Mice. Diabetes, 2015, 64, 2996-3009.	0.3	75
80	Effects of anti-diabetic drugs on bone metabolism. Expert Review of Endocrinology and Metabolism, 2015, 10, 663-675.	1.2	13
81	Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study. Bone, 2015, 76, 31-39.	1.4	33
82	Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Molecular and Cellular Endocrinology, 2015, 412, 95-103.	1.6	22
83	Positive effects of GLPâ€1 receptor activation with liraglutide on pancreatic islet morphology and metabolic control in C57BL/KsJ <i>db</i> /ki>/ki>/ki>/ki>/ki>/ki>/ki>/ki>/ki>/	1.7	25
84	Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength. Osteoporosis International, 2015, 26, 209-218.	1.3	37
85	Gastric Inhibitory Polypeptide (GIP) Is Selectively Decreased in the Roux-Limb of Dietary Obese Mice after RYGB Surgery. PLoS ONE, 2015, 10, e0134728.	1.1	8
86	Two novel glucagon receptor antagonists prove effective therapeutic agents in highâ€fatâ€fed and obese diabetic mice. Diabetes, Obesity and Metabolism, 2014, 16, 1214-1222.	2.2	25
87	Effects of short-term chemical ablation of glucagon signalling by peptide-based glucagon receptor antagonists on insulin secretion and glucose homeostasis in mice. Biological Chemistry, 2014, 395, 433-442.	1.2	14
88	Ablation of glucagon receptor signaling by peptide-based glucagon antagonists improves glucose tolerance in high fat fed mice. Peptides, 2014, 60, 95-101.	1.2	18
89	Effects of chronic exposure of clonal βâ€cells to elevated glucose and free fatty acids on incretin receptor gene expression and secretory responses to <scp>GIP</scp> and <scp>GLP</scp> â€1. Diabetes, Obesity and Metabolism, 2014, 16, 357-365.	2.2	13
90	Characterisation of the biological activity of xenin-25 degradation fragment peptides. Journal of Endocrinology, 2014, 221, 193-200.	1.2	37

#	Article	IF	CITATIONS
91	Comparison of stability, cellular, glucose-lowering and appetite supressing effects of oxyntomodulin analogues modified at the N-terminus. European Journal of Pharmacology, 2014, 743, 69-78.	1.7	24
92	Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology, 2014, 86, 22-30.	2.0	68
93	Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone, 2014, 63, 61-68.	1.4	37
94	A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation. Diabetologia, 2014, 57, 1927-1936.	2.9	22
95	Comparison of the metabolic effects of sustained CCK1 receptor activation alone and in combination with upregulated leptin signalling in high-fat-fed mice. Diabetologia, 2013, 56, 1425-1435.	2.9	16
96	Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone, 2013, 56, 337-342.	1.4	89
97	Beneficial effects of parenteral GLP-1 delivery by cell therapy in insulin-deficient streptozotocin diabetic mice. Gene Therapy, 2013, 20, 1077-1084.	2.3	13
98	Metabolic effects of activation of CCK receptor signaling pathways by twice-daily administration of the enzyme-resistant CCK-8 analog, (pGlu-Gln)-CCK-8, in normal mice. Journal of Endocrinology, 2013, 216, 53-59.	1.2	17
99	(pGlu-Gln)-CCK-8[mPEG]: A novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4009-4016.	1.1	17
100	Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone, 2013, 53, 221-230.	1.4	70
101	Characterisation of structurally modified analogues of glucagon as potential glucagon receptor antagonists. Molecular and Cellular Endocrinology, 2013, 381, 26-34.	1.6	23
102	Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Current Opinion in Pharmacology, 2013, 13, 989-995.	1.7	37
103	desHis1Glu9-glucagon-[mPEG] and desHis1Glu9(Lys30PAL)-glucagon: Long-acting peptide-based PEGylated and acylated glucagon receptor antagonists with potential antidiabetic activity. European Journal of Pharmacology, 2013, 709, 43-51.	1.7	16
104	A novel acylated form of (d-Ala2)GIP with improved antidiabetic potential, lacking effect on body fat stores. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3407-3413.	1.1	42
105	Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochemical Pharmacology, 2013, 85, 81-91.	2.0	25
106	Unraveling the Mechanisms Underlying Olanzapine-Induced Insulin Resistance. Diabetes, 2013, 62, 3022-3023.	0.3	5
107	Beneficial Effects of (pGlu-Gln)-CCK-8 on Energy Intake and Metabolism in High Fat Fed Mice are Associated with Alterations of Hypothalamic Gene Expression. Hormone and Metabolic Research, 2013, 45, 471-473.	0.7	12
108	Comparison of independent and combined metabolic effects of chronic treatment with (<scp>pClu</scp> â€Cln)â€ <scp>CCK</scp> â€8 and longâ€acting <scp>CLP</scp> â€1 and <scp>CIP</scp> mi in high fatâ€fed mice. Diabetes, Obesity and Metabolism, 2013, 15, 650-659.	metziæs	31

#	Article	IF	CITATIONS
109	Comparison of the independent and combined metabolic effects of subchronic modulation of CCK and GIP receptor action in obesity-related diabetes. International Journal of Obesity, 2013, 37, 1058-1063.	1.6	16
110	A Novel Glucagon-like Peptide-1 (GLP-1)/Glucagon Hybrid Peptide with Triple-acting Agonist Activity at Glucose-dependent Insulinotropic Polypeptide, GLP-1, and Glucagon Receptors and Therapeutic Potential in High Fat-fed Mice. Journal of Biological Chemistry, 2013, 288, 35581-35591.	1.6	107
111	Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. Journal of Endocrinology, 2013, 219, 59-68.	1.2	80
112	GIP., 2013, , 1227-1235.		1
113	Alterations of Glucose-Dependent Insulinotropic Polypeptide and Expression of Genes Involved in Mammary Gland and Adipose Tissue Lipid Metabolism during Pregnancy and Lactation. PLoS ONE, 2013, 8, e78560.	1.1	25
114	Evaluation of the long-term effects of gastric inhibitory polypeptide–ovalbumin conjugates on insulin resistance, metabolic dysfunction, energy balance and cognition in high-fat-fed mice. British Journal of Nutrition, 2012, 108, 46-56.	1.2	15
115	Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes. Diabetologia, 2012, 55, 2747-2758.	2.9	60
116	Degradation, insulin secretion, glucose-lowering and GIP additive actions of a palmitate-derivatised analogue of xenin-25. Biochemical Pharmacology, 2012, 84, 312-319.	2.0	43
117	Dual modulation of GIP and glucagon action by the low molecular weight compound 4-hydroxybenzoic acid 2-bromobenzylidene hydrazide. Diabetes, Obesity and Metabolism, 2011, 13, 742-749.	2.2	5
118	Alterations of glucose-dependent insulinotropic polypeptide (GIP) during cold acclimation. Regulatory Peptides, 2011, 167, 91-96.	1.9	9
119	Prolonged GIP receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. European Journal of Pharmacology, 2011, 650, 688-693.	1.7	66
120	Insulin modulates glucose-dependent insulinotropic polypeptide (GIP) secretion from enteroendocrine K cells in rats. Biological Chemistry, 2011, 392, 909-918.	1.2	5
121	Comparison of sub-chronic metabolic effects of stable forms of naturally occurring CIP(1-30) and CIP(1-42) in high fat fed mice. Journal of Endocrinology, 2011, 208, 265-71.	1.2	49
122	Acute and Long-term Effects of Peroxisome Proliferator-activated Receptor-Î ³ Activation on the Function and Insulin Secretory Responsiveness of Clonal Beta-Cells. Hormone and Metabolic Research, 2011, 43, 244-249.	0.7	12
123	Insulin-releasing and metabolic effects of small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline. European Journal of Pharmacology, 2010, 628, 268-273.	1.7	31
124	Active immunization against (Pro ³)GIP improves metabolic status in highâ€fatâ€fed mice. Diabetes, Obesity and Metabolism, 2010, 12, 744-751.	2.2	26
125	Effects of metformin on BRINâ€BD11 betaâ€cell insulin secretory desensitization induced by prolonged exposure to sulphonylureas. Diabetes, Obesity and Metabolism, 2010, 12, 1066-1071.	2.2	6
126	Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal β-cells. Biological Chemistry, 2010, 391, 1451-9.	1.2	10

#	Article	IF	CITATIONS
127	Therapeutic potential of the original incretin hormone glucose-dependent insulinotropic polypeptide: diabetes, obesity, osteoporosis and Alzheimer's disease?. Expert Opinion on Investigational Drugs, 2010, 19, 1039-1048.	1.9	45
128	Evaluation of the degradation and metabolic effects of the gut peptide xenin on insulin secretion, glycaemic control and satiety. Journal of Endocrinology, 2010, 207, 87-93.	1.2	47
129	Metabolic and structural properties of human obestatin {1–23} and two fragment peptides. Peptides, 2010, 31, 1697-1705.	1.2	14
130	Review: Maximising the therapeutic potential of glucagon-like peptide-1 in type 2 diabetes. British Journal of Diabetes and Vascular Disease, 2009, 9, 44-52.	0.6	2
131	Active immunisation against gastric inhibitory polypeptide (GIP) improves blood glucose control in an an animal model of obesity-diabetes. Biological Chemistry, 2009, 390, 75-80.	1.2	34
132	Fatty acid derivatised analogues of glucose-dependent insulinotropic polypeptide with improved antihyperglycaemic and insulinotropic properties. Biochemical Pharmacology, 2009, 78, 1008-1016.	2.0	40
133	Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications. Diabetologia, 2009, 52, 1724-1731.	2.9	118
134	Metabolic effects of sustained activation of the GLPâ€l receptor alone and in combination with background GIP receptor antagonism in high fat–fed mice. Diabetes, Obesity and Metabolism, 2009, 11, 603-610.	2.2	30
135	Antidiabetic effects of sub-chronic activation of the CIP receptor alone and in combination with background exendin-4 therapy in high fat fed mice. Regulatory Peptides, 2009, 153, 70-76.	1.9	35
136	Prolonged GIP receptor activation using stable mini-PEGylated GIP improves glucose homeostasis and beta-cell function in age-related glucose intolerance. Peptides, 2009, 30, 219-225.	1.2	15
137	Therapeutic potential for GIP receptor agonists and antagonists. Best Practice and Research in Clinical Endocrinology and Metabolism, 2009, 23, 499-512.	2.2	84
138	(Pro ³)GIP[mPEG]: novel, longâ€acting, mPEGylated antagonist of gastric inhibitory polypeptide for obesityâ€diabetes (diabesity) therapy. British Journal of Pharmacology, 2008, 155, 690-701.	2.7	41
139	Daily administration of the GIP-R antagonist (Pro3)GIP in streptozotocin-induced diabetes suggests that insulin-dependent mechanisms are critical to anti–obesity-diabetes actions of (Pro3)GIP. Diabetes, Obesity and Metabolism, 2008, 10, 336-342.	2.2	15
140	C-terminal mini-PEGylation of glucose-dependent insulinotropic polypeptide exhibits metabolic stability and improved glucose homeostasis in dietary-induced diabetes. Biochemical Pharmacology, 2008, 75, 2325-2333.	2.0	32
141	Antidiabetic effects of sub-chronic administration of the cannabinoid receptor (CB1) antagonist, AM251, in obese diabetic (ob/ob) mice. European Journal of Pharmacology, 2008, 581, 226-233.	1.7	31
142	Comparison of independent and combined chronic metabolic effects of GIP and CB1 receptor blockade in high-fat fed mice. Peptides, 2008, 29, 1036-1041.	1.2	9
143	Sub-chronic administration of the 11β-HSD1 inhibitor, carbenoxolone, improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity. Biological Chemistry, 2008, 389, 441-445.	1.2	26
144	Effects of gastric inhibitory polypeptide (GIP) and related analogues on glucagon release at normo- and hyperglycaemia in Wistar rats and isolated islets. Biological Chemistry, 2008, 389, 189-193.	1.2	17

#	Article	IF	CITATIONS
145	GIP-Based Therapeutics for Diabetes and Obesity. Current Chemical Biology, 2008, 2, 60-67.	0.2	0
146	GIP-Based Therapeutics for Diabetes and Obesity. Current Chemical Biology, 2008, 2, 60-67.	0.2	4
147	Antagonistic effects of two novel GIP analogs, (Hyp3)GIP and (Hyp3)GIPLys16PAL, on the biological actions of GIP and longer-term effects in diabetic ob/ob mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1674-E1682.	1.8	7
148	GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1746-E1755.	1.8	211
149	Metabolic effects of sub-chronic ablation of the incretin receptors by daily administration of (Pro3)GIP and exendin(9–39)amide in obese diabetic (ob/ob) mice. Biological Chemistry, 2007, 388, 221-6.	1.2	22
150	Effects of Subchronic Treatment With the Long-Acting Glucose-Dependent Insulinotropic Polypeptide Receptor Agonist, N-AcGIP, on Glucose Homeostasis in Streptozotocin-Induced Diabetes. Pancreas, 2007, 35, 73-79.	0.5	5
151	Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice. Peptides, 2007, 28, 981-987.	1.2	82
152	Comparison of the metabolic effects of GIP receptor antagonism and PYY(3-36) receptor activation in high fat fed mice. Peptides, 2007, 28, 2192-2198.	1.2	7
153	Characterisation and biological activity of Glu3 amino acid substituted GIP receptor antagonists. Archives of Biochemistry and Biophysics, 2007, 461, 263-274.	1.4	12
154	Characterisation and glucoregulatory actions of a novel acylated form of the (Pro3)GIP receptor antagonist in type 2 diabetes. Biological Chemistry, 2007, 388, 173-9.	1.2	13
155	Comparison of the anti-diabetic effects of GIP- and GLP-1-receptor activation in obese diabetic (ob/ob) mice: studies with DPP IV resistantN-AcGIP and exendin(1–39)amide. Diabetes/Metabolism Research and Reviews, 2007, 23, 572-579.	1.7	29
156	Comparison of the subchronic antidiabetic effects of DPP IV–resistant GIP and GLP-1 analogues in obese diabetic (ob/ob) mice. Journal of Peptide Science, 2007, 13, 400-405.	0.8	20
157	Effects of antidiabetic drugs on dipeptidyl peptidase IV activity: Nateglinide is an inhibitor of DPP IV and augments the antidiabetic activity of glucagon-like peptide-1. European Journal of Pharmacology, 2007, 568, 278-286.	1.7	46
158	Beneficial effects of sub-chronic activation of glucagon-like peptide-1 (GLP-1) receptors on deterioration of glucose homeostasis and insulin secretion in aging mice. Experimental Gerontology, 2007, 42, 296-300.	1.2	10
159	Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia, 2007, 50, 1532-1540.	2.9	92
160	Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets. Diabetologia, 2007, 50, 1752-1762.	2.9	117
161	GIP(Lys16PAL) and GIP(Lys37PAL):Â Novel Long-Acting Acylated Analogues of Glucose-Dependent Insulinotropic Polypeptide with Improved Antidiabetic Potential. Journal of Medicinal Chemistry, 2006, 49, 1047-1054.	2.9	46
162	Biological activity and antidiabetic potential of synthetic fragment peptides of glucose-dependent insulinotropic polypeptide, GIP(1-16) and (Pro3)GIP(1-16). Regulatory Peptides, 2006, 135, 45-53.	1.9	12

#	Article	IF	CITATIONS
163	Effects on glucose homeostasis and insulin secretion of long term activation of the glucose-dependent insulinotropic polypeptide (GIP) receptor by N-AcGIP(LysPAL37) in normal mice. Peptides, 2006, 27, 893-900.	1.2	18
164	Pituitary adenylate cyclase-activating peptide (PACAP): Assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential. Peptides, 2006, 27, 1349-1358.	1.2	29
165	Long-term administration of PACAP receptor antagonist, PACAP(6-27), impairs glucose tolerance and insulin sensitivity in obese diabetic ob/ob mice. Peptides, 2006, 27, 2343-2349.	1.2	16
166	Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. European Journal of Pharmacology, 2006, 547, 192-199.	1.7	98
167	Stable agonist of glucose-dependent insulinotropic polypeptide (GIP) restores pancreatic beta cell glucose responsiveness but not glucose intolerance in aging mice. Experimental Gerontology, 2006, 41, 151-156.	1.2	19
168	Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide. Biochemical Pharmacology, 2006, 72, 719-728.	2.0	37
169	Effects of sub-chronic exposure to naturally occurring N-terminally truncated metabolites of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), GIP(3–42) and GLP-1(9–36)amide, on insulin secretion and glucose homeostasis in ob/ob mice. Journal of Endocrinology, 2006, 191, 93-100.	1.2	14
170	Novel Glucagon-Like Peptide-1 (GLP-1) Analog (Val8)GLP-1 Results in Significant Improvements of Glucose Tolerance and Pancreatic β-Cell Function after 3-Week Daily Administration in Obese Diabetic (ob/ob) Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 914-921.	1.3	48
171	Chronic treatment with exendin(9–39)amide indicates a minor role for endogenous glucagon-like peptide-1 in metabolic abnormalities of obesity-related diabetes in ob/ob mice. Journal of Endocrinology, 2005, 185, 307-317.	1.2	19
172	Chemical Ablation of Gastric Inhibitory Polypeptide Receptor Action by Daily (Pro3)GIP Administration Improves Glucose Tolerance and Ameliorates Insulin Resistance and Abnormalities of Islet Structure in Obesity-Related Diabetes. Diabetes, 2005, 54, 2436-2446.	0.3	157
173	A Novel, Long-Acting Agonist of Glucose-Dependent Insulinotropic Polypeptide Suitable for Once-Daily Administration in Type 2 Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1187-1194.	1.3	54
174	Review: Development and therapeutic potential of incretin hormone analogues for type 2 diabetes. British Journal of Diabetes and Vascular Disease, 2005, 5, 134-140.	0.6	21
175	Antidiabetic potential of two novel fatty acid derivatised, N-terminally modified analogues of glucose-dependent insulinotropic polypeptide (GIP): N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). Biological Chemistry, 2005, 386, 679-87.	1.2	35
176	Degradation, Insulin Secretion, and Antihyperglycemic Actions of Two Palmitate-DerivitizedN-Terminal Pyroglutamyl Analogues of Glucose-Dependent Insulinotropic Polypeptide. Journal of Medicinal Chemistry, 2005, 48, 1244-1250.	2.9	37
177	N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity. Journal of Endocrinology, 2004, 180, 379-388.	1.2	52
178	Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice. Biological Chemistry, 2004, 385, 845-52.	1.2	44
179	Degradation, receptor binding, insulin secreting and antihyperglycaemic actions of palmitate-derivatised native and Ala8-substituted GLP-1 analogues. Biological Chemistry, 2004, 385, 169-77.	1.2	38
180	Lys9 for Glu9 substitution in glucagon-like peptide-1(7–36)amide confers dipeptidylpeptidase IV resistance with cellular and metabolic actions similar to those of established antagonists glucagon-like peptide-1(9–36)amide and exendin (9–39). Metabolism: Clinical and Experimental, 2004, 53, 252-259.	1.5	36

#	Article	IF	CITATIONS
181	DPP IV resistance and insulin releasing activity of a novel di-substituted analogue of glucose-dependent insulinotropic polypeptide, (Ser2–Asp13)GIP. Cell Biology International, 2003, 27, 41-46.	1.4	26
182	Novel dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1(7-36)amide have preserved biological activities in vitro conferring improved glucose-lowering action in vivo. Journal of Molecular Endocrinology, 2003, 31, 529-540.	1.1	35
183	Metabolic Stability, Receptor Binding, cAMP Generation, Insulin Secretion and Antihyperglycaemic Activity of Novel N-Terminal Glu9-Substituted Analogues of Glucagon-Like Peptide-1. Biological Chemistry, 2003, 384, 1543-51.	1.2	22
184	Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical microarchitectures and bone strength Bone Abstracts, 0, , .	0.0	0
185	Beneficial effects of a GIP mimetic on bone material properties. Bone Abstracts, 0, , .	0.0	0
186	Novel glucagon receptor antagonist peptides improve glycaemic control and partially protect against streptozotocin induced diabetes in mice. Endocrine Abstracts, 0, , .	0.0	0